Suppr超能文献

基于脑电图的情绪状态分类的降维技术比较分析

Comparative analysis of dimensionality reduction techniques for EEG-based emotional state classification.

作者信息

Sadegh-Zadeh Seyed-Ali, Sadeghzadeh Nasrin, Soleimani Ommolbanin, Shiry Ghidary Saeed, Movahedi Sobhan, Mousavi Seyed-Yaser

机构信息

Department of Computing, University of Staffordshire Stoke-on-Trent, United Kingdom.

Faculty of Mathematics, University of Qom Qom, Iran.

出版信息

Am J Neurodegener Dis. 2024 Oct 25;13(4):23-33. doi: 10.62347/ZWRY8401. eCollection 2024.

Abstract

OBJECTIVES

The aim of this study is to evaluate the impact of various dimensionality reduction methods, including principal component analysis (PCA), Laplacian score, and Chi-square feature selection, on the classification performance of an electroencephalogram (EEG) dataset.

METHODS

We applied dimensionality reduction techniques, including PCA, Laplacian score, and Chi-square feature selection, and assessed their impact on the classification performance of EEG data using linear regression, K-nearest neighbour (KNN), and Naive Bayes classifiers. The models were evaluated in terms of their classification accuracy and computational efficiency.

RESULTS

Our findings suggest that all dimensionality reduction strategies generally improved or maintained classification accuracy while reducing the computational load. Notably, PCA and Autofeat techniques led to increased accuracy for the models.

CONCLUSIONS

The use of dimensionality reduction techniques can enhance EEG data classification by reducing computational demands without compromising accuracy. These results demonstrate the potential for these techniques to be applied in scenarios where both computational efficiency and high accuracy are desired. The code used in this study is available at https://github.com/movahedso/Emotion-analysis.

摘要

目的

本研究旨在评估包括主成分分析(PCA)、拉普拉斯分数和卡方特征选择在内的各种降维方法对脑电图(EEG)数据集分类性能的影响。

方法

我们应用了包括PCA、拉普拉斯分数和卡方特征选择在内的降维技术,并使用线性回归、K近邻(KNN)和朴素贝叶斯分类器评估它们对EEG数据分类性能的影响。根据分类准确率和计算效率对模型进行评估。

结果

我们的研究结果表明,所有降维策略在降低计算量的同时,通常都提高或保持了分类准确率。值得注意的是,PCA和自动特征提取技术提高了模型的准确率。

结论

使用降维技术可以通过降低计算需求来增强EEG数据分类,而不会影响准确率。这些结果证明了这些技术在需要计算效率和高精度的场景中应用的潜力。本研究中使用的代码可在https://github.com/movahedso/Emotion-analysis获取。

相似文献

7
Classification of EEG Signals Based on Pattern Recognition Approach.基于模式识别方法的脑电图信号分类
Front Comput Neurosci. 2017 Nov 21;11:103. doi: 10.3389/fncom.2017.00103. eCollection 2017.
10
Revealing False Positive Features in Epileptic EEG Identification.揭示癫痫脑电识别中的假阳性特征。
Int J Neural Syst. 2020 Nov;30(11):2050017. doi: 10.1142/S0129065720500173. Epub 2020 May 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验