Suppr超能文献

避免放射学人工智能中的错失机会。

Avoiding missed opportunities in AI for radiology.

机构信息

Department of Radiology, Staten Island University Hospital - Northwell Health, 475 Seaview Avenue, Staten Island, NY, 10305, USA.

出版信息

Int J Comput Assist Radiol Surg. 2024 Dec;19(12):2297-2300. doi: 10.1007/s11548-024-03295-9. Epub 2024 Nov 25.

Abstract

PURPOSE

In the last decade, the development of Deep Learning and its variants, based on the application of artificial neural networks, has reinvigorated Artificial Intelligence (AI). As a result, many new applications of AI in medicine, especially Radiology, have been introduced. This resurgence in AI, and its diverse clinical and nonclinical applications throughout healthcare, requires a thorough understanding to reap the potential benefits and avoid the potential pitfalls.

METHODS

To realize the full potential of AI in medicine, a highly coordinated approach should be undertaken to select, support and finance more highly focused AI projects. By studying and understanding the successes and failures, and strengths and limitations, of AI in Radiology, it is possible to seek and develop the most clinically relevant AI algorithms. The authors have reviewed their clinical practice regarding the use of AI to determine applications in which AI can add both clinical and remunerative benefits.

RESULTS

Review of our policies and applications regarding AI in the Department of Radiology emphasized that, at the time of this writing, AI has been useful in the detection of specific clinical entities for which the AI algorithms have been designed. In addition to helping to reduce diagnostic errors, AI offers an important opportunity to prioritize positive cases, such as pulmonary embolism or intracranial hemorrhage. It has become apparent that the detection of certain conditions, such as incidental and unsuspected cerebral aneurysms can be used to initiate a variety of patient-oriented activities. Finding an unsuspected brain aneurysm is not only of clinical importance to the patient, but the required clinical workup and management of the patient can help generate reimbursement that helps defray the cost of AI implementations. A program for screening, clinical management, and follow-up, facilitated by the AI detection of incidental brain aneurysms, has been implemented at our multi-hospital healthcare system.

CONCLUSION

We feel that it is possible to avoid missed opportunities for AI in Radiology and create AI tools to enhance medical wisdom and improve patient care, within a fiscally responsive environment.

摘要

目的

在过去的十年中,基于人工神经网络应用的深度学习及其变体的发展,重新激发了人工智能(AI)的活力。因此,许多 AI 在医学领域的新应用,尤其是放射学,已经出现。这种 AI 的复兴,以及其在整个医疗保健领域的各种临床和非临床应用,需要深入理解,以充分利用其潜力并避免潜在的陷阱。

方法

为了实现 AI 在医学中的全部潜力,应该采取高度协调的方法来选择、支持和资助更集中的 AI 项目。通过研究和理解 AI 在放射学中的成功和失败、优势和局限性,可以寻求和开发最具临床相关性的 AI 算法。作者回顾了他们在使用 AI 方面的临床实践,以确定 AI 可以增加临床和盈利效益的应用。

结果

审查我们在放射科使用 AI 的政策和应用,强调在撰写本文时,AI 在设计用于检测特定临床实体的应用中是有用的。除了有助于减少诊断错误外,AI 还提供了一个重要的机会,可以优先处理阳性病例,如肺栓塞或颅内出血。很明显,某些情况下的检测,如偶然发现的和未被怀疑的脑动脉瘤,可以用于启动各种面向患者的活动。发现未被怀疑的脑动脉瘤不仅对患者具有重要的临床意义,而且对患者的临床检查和管理可以帮助产生报销,以抵消 AI 实施的成本。我们的多医院医疗系统已经实施了一个通过 AI 检测偶然发现的脑动脉瘤来进行筛查、临床管理和随访的程序。

结论

我们认为,有可能避免在放射学中错失 AI 的机会,并在财务响应环境中创建 AI 工具,以增强医学智慧并改善患者护理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验