Aydin Orhun Utku, Hilbert Adam, Koch Alexander, Lohrke Felix, Rieger Jana, Tanioka Satoru, Frey Dietmar
CLAIM - Charité Lab for Artificial Intelligence in Medicine, Charité Universitätsmedizin Berlin, Germany.
CLAIM - Charité Lab for Artificial Intelligence in Medicine, Charité Universitätsmedizin Berlin, Germany; Department of Neurosurgery, Charité Universitätsmedizin Berlin, Germany.
Neuroimage. 2024 Dec 15;304:120936. doi: 10.1016/j.neuroimage.2024.120936. Epub 2024 Nov 23.
The circle of Willis (CoW) is a network of cerebral arteries with significant inter-individual anatomical variations. Deep learning has been used to characterize and quantify the status of the CoW in various applications for the diagnosis and treatment of cerebrovascular disease. In medical imaging, the performance of deep learning models is limited by the diversity and size of training datasets. To address medical data scarcity, generative AI models have been applied to generate synthetic vessel neuroimaging data. However, the proposed methods produce synthetic data with limited anatomical fidelity or downstream utility in tasks concerning vessel characteristics. We adapted the StyleGANv2 architecture to 3D to synthesize Time-of-Flight Magnetic Resonance Angiography (TOF MRA) volumes of the CoW. For generative modeling, we used 1782 individual TOF MRA scans from 6 open source datasets. To train the adapted 3D StyleGAN model with limited data we employed differentiable data augmentations, used mixed precision and a cropped region of interest of size 32 × 128 × 128 to tackle computational constraints. The performance was evaluated quantitatively using the Fréchet Inception Distance (FID), MedicalNet distance (MD) and Area Under the Curve of the Precision and Recall Curve for Distributions (AUC-PRD). Qualitative analysis was performed via a visual Turing test. We demonstrated the utility of generated data in a downstream task of multiclass semantic segmentation of CoW arteries. Vessel segmentation performance was assessed quantitatively using the Dice coefficient and the Hausdorff distance. The best-performing 3D StyleGANv2 architecture generated high-quality and diverse synthetic TOF MRA volumes (FID: 12.17, MD: 0.00078, AUC-PRD: 0.9610). Multiclass vessel segmentation models trained on synthetic data alone achieved comparable performance to models trained using real data in most arteries. The addition of synthetic data to a baseline training set improved segmentation performance in underrepresented artery segments, similar to the addition of real data. In conclusion, generative modeling of the Circle of Willis via synthesis of 3D TOF MRA data paves the way for generalizable deep learning applications in cerebrovascular disease. In the future, the extensions of the provided methodology to other medical imaging problems or modalities with the inclusion of pathological datasets has the potential to advance the development of more robust AI models for clinical applications.
Willis环(CoW)是一个脑动脉网络,个体间存在显著的解剖变异。深度学习已被用于在各种脑血管疾病诊断和治疗应用中表征和量化CoW的状态。在医学成像中,深度学习模型的性能受到训练数据集的多样性和大小的限制。为了解决医学数据稀缺问题,生成式人工智能模型已被应用于生成合成血管神经影像数据。然而,所提出的方法在涉及血管特征的任务中产生的合成数据在解剖逼真度或下游实用性方面有限。我们将StyleGANv2架构改编为3D,以合成CoW的时间飞跃磁共振血管造影(TOF MRA)体积。对于生成建模,我们使用了来自6个开源数据集的1782个个体TOF MRA扫描。为了用有限的数据训练改编后的3D StyleGAN模型,我们采用了可微数据增强,使用了混合精度和大小为32×128×128的裁剪感兴趣区域来解决计算限制。使用Fréchet Inception距离(FID)、MedicalNet距离(MD)和分布精度与召回率曲线下面积(AUC-PRD)对性能进行定量评估。通过视觉图灵测试进行定性分析。我们展示了生成的数据在CoW动脉多类语义分割的下游任务中的实用性。使用Dice系数和豪斯多夫距离对血管分割性能进行定量评估。性能最佳的3D StyleGANv2架构生成了高质量且多样的合成TOF MRA体积(FID:12.17,MD:0.00078,AUC-PRD:0.9610)。仅在合成数据上训练的多类血管分割模型在大多数动脉中实现了与使用真实数据训练的模型相当的性能。在基线训练集中添加合成数据可提高代表性不足的动脉段的分割性能,类似于添加真实数据。总之,通过合成3D TOF MRA数据对Willis环进行生成建模为脑血管疾病中可推广的深度学习应用铺平了道路。未来,将所提供的方法扩展到其他医学成像问题或模态,并纳入病理数据集,有可能推动更强大的临床应用人工智能模型的发展。