Suppr超能文献

具有遗传周期长度的增殖细胞群体模型。

A model of proliferating cell populations with inherited cycle length.

作者信息

Webb G F

出版信息

J Math Biol. 1986;23(2):269-82. doi: 10.1007/BF00276962.

Abstract

A mathematical model of cell population growth introduced by J.L. Lebowitz and S.I. Rubinow is analyzed. Individual cells are distinguished by age and cell cycle length. The cell cycle length is viewed as an inherited property determined at birth. The density of the population satisfies a first order linear partial differential equation with initial and boundary conditions. The boundary condition models the process of cell division of mother cells and the inheritance of cycle length by daughter cells. The mathematical analysis of the model employs the theory of operator semigroups and the spectral theory of linear operators. It is proved that the solutions exhibit the property of asynchronous exponential growth.

摘要

对J.L. 莱博维茨和S.I. 鲁比诺提出的细胞群体生长数学模型进行了分析。单个细胞按年龄和细胞周期长度区分。细胞周期长度被视为出生时确定的遗传特性。群体密度满足带有初始条件和边界条件的一阶线性偏微分方程。边界条件对母细胞的细胞分裂过程以及子细胞对周期长度的遗传进行建模。该模型的数学分析采用了算子半群理论和线性算子的谱理论。证明了该解具有异步指数增长的特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验