Suppr超能文献

Ia期乳腺癌的亚型特异性检测:整合拉曼光谱、机器学习和液体活检用于个性化诊断

Subtype-Specific Detection in Stage Ia Breast Cancer: Integrating Raman Spectroscopy, Machine Learning, and Liquid Biopsy for Personalised Diagnostics.

作者信息

Tipatet Kevin Saruni, Hanna Katie, Davison-Gates Liam, Kerst Mario, Downes Andrew

机构信息

Institute for BioEngineering, School of Engineering, University of Edinburgh, Edinburgh, UK.

Promotionskolleg NRW, Bochum, Germany.

出版信息

J Biophotonics. 2025 Jan;18(1):e202400427. doi: 10.1002/jbio.202400427. Epub 2024 Nov 25.

Abstract

This study explores the integration of Raman spectroscopy (RS) with machine learning for the early detection and subtyping of breast cancer using blood plasma samples. We performed detailed spectral analyses, identifying significant spectral patterns associated with cancer biomarkers. Our findings demonstrate the potential for classifying the four major subtypes of breast cancer at stage Ia with an average sensitivity and specificity of 90% and 95%, respectively, and a cross-validated macro-averaged area under the curve (AUC) of 0.98. This research highlights efforts to integrate vibrational spectroscopy with machine learning, enhancing cancer diagnostics through a non-invasive, personalised approach for early detection and monitoring disease progression. This study is the first of its kind to utilise RS and machine learning to classify the four major breast cancer subtypes at stage Ia.

摘要

本研究探索了拉曼光谱(RS)与机器学习相结合,用于使用血浆样本对乳腺癌进行早期检测和亚型分类。我们进行了详细的光谱分析,识别出与癌症生物标志物相关的重要光谱模式。我们的研究结果表明,对于Ia期的四种主要乳腺癌亚型进行分类具有潜力,平均灵敏度和特异性分别为90%和95%,交叉验证的曲线下宏平均面积(AUC)为0.98。本研究突出了将振动光谱与机器学习相结合的努力,通过一种非侵入性的、个性化的方法来增强癌症诊断,以实现早期检测和监测疾病进展。本研究是同类研究中首个利用RS和机器学习对Ia期的四种主要乳腺癌亚型进行分类的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac47/11700701/b5d6448e90ad/JBIO-18-e202400427-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验