Suppr超能文献

基于基因表达的肺腺癌黑种人或非裔美国人总生存期建模。

Gene expression-based modeling of overall survival in Black or African American patients with lung adenocarcinoma.

机构信息

Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.

出版信息

Front Immunol. 2024 Nov 11;15:1478491. doi: 10.3389/fimmu.2024.1478491. eCollection 2024.

Abstract

INTRODUCTION

Lung cancer is a leading cause of cancer-related deaths worldwide. Black/African American (B/AA) populations, in particular, exhibit the highest incidence and mortality rates of lung adenocarcinoma (LUAD) in the United States.

METHODS

This study aims to explore gene expression patterns linked to LUAD in B/AA and case-matched white patients, with the goal of developing predictive models for prognosis. Leveraging RNA sequencing data from The Cancer Genome Atlas (TCGA) database, genes and pathways associated with overall survival (OS) were identified.

RESULTS

The OS-associated genes in B/AA patients were distinct from those in white patients, showing predominant enrichment in immune-related pathways. Furthermore, mRNA co-expression network analysis revealed that OS-associated genes in B/AA patients had higher levels of interaction with various pathways, including those related to immunity, cell-ECM interaction, and specific intracellular signaling pathways. Notably, a potential B/AA-specific biomarker, , demonstrated significant correlations with genes involved in immune response. Unsupervised machine learning algorithms stratified B/AA patients into groups with distinct survival outcomes, while supervised algorithms demonstrated a higher accuracy in predicting survival for B/AA LUAD patients compared to white patients.

DISCUSSION

In total, this study explored OS-associated genes and pathways specific for B/AA LUAD patients. Further validation and clinical application of these findings are warranted to address disparities and improve outcomes in diverse patient populations.

摘要

简介

肺癌是全球癌症相关死亡的主要原因。特别是在美国,黑种人/非裔美国人(B/AA)群体表现出最高的肺腺癌(LUAD)发病率和死亡率。

方法

本研究旨在探索与 B/AA 和病例匹配的白人患者 LUAD 相关的基因表达模式,旨在开发用于预后预测的模型。利用来自癌症基因组图谱(TCGA)数据库的 RNA 测序数据,鉴定与总生存期(OS)相关的基因和途径。

结果

B/AA 患者的 OS 相关基因与白人患者不同,主要富集在免疫相关途径中。此外,mRNA 共表达网络分析表明,B/AA 患者的 OS 相关基因与各种途径的相互作用水平更高,包括与免疫、细胞-ECM 相互作用和特定细胞内信号通路相关的途径。值得注意的是,一个潜在的 B/AA 特异性生物标志物 ,与参与免疫反应的基因显著相关。无监督机器学习算法将 B/AA 患者分为具有不同生存结局的组,而监督算法在预测 B/AA LUAD 患者的生存方面表现出比白人患者更高的准确性。

讨论

总之,本研究探讨了与 B/AA LUAD 患者相关的 OS 相关基因和途径。需要进一步验证和临床应用这些发现,以解决不同患者群体中的差异并改善结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6141/11586367/6b33af7c40ec/fimmu-15-1478491-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验