Huber A J, Keilmann F, Wittborn J, Aizpurua J, Hillenbrand R
Max-Planck-Institut fur Biochemie and Center for NanoScience, 82152 Martinsried (München), Germany.
Nano Lett. 2008 Nov;8(11):3766-70. doi: 10.1021/nl802086x. Epub 2008 Oct 7.
We introduce ultraresolving terahertz (THz) near-field microscopy based on THz scattering at atomic force microscope tips. Nanoscale resolution is achieved by THz field confinement at the very tip apex to within 30 nm, which is in good agreement with full electro-dynamic calculations. Imaging semiconductor transistors, we provide first evidence of 40 nm (lambda/3000) spatial resolution at 2.54 THz (wavelength lambda=118 microm) and demonstrate the simultaneous THz recognition of materials and mobile carriers in a single nanodevice. Fundamentally important, we find that the mobile carrier contrast can be directly related to near-field excitation of THz-plasmons in the doped semiconductor regions. This opens the door to quantitative studies of local carrier concentration and mobility at the nanometer scale. The THz near-field response is extraordinary sensitive, providing contrast from less than 100 mobile electrons in the probed volume. Future improvements could allow for THz characterization of even single electrons or biomolecules.
我们介绍了基于太赫兹(THz)在原子力显微镜针尖处散射的超分辨太赫兹近场显微镜。通过将太赫兹场限制在非常尖锐的针尖顶端至30纳米范围内实现了纳米级分辨率,这与全电动力学计算结果高度吻合。在对半导体晶体管成像时,我们提供了在2.54太赫兹(波长λ = 118微米)下40纳米(λ/3000)空间分辨率的首个证据,并展示了在单个纳米器件中对材料和移动载流子的同时太赫兹识别。从根本上来说很重要的是,我们发现移动载流子对比度可直接与掺杂半导体区域中太赫兹等离激元的近场激发相关。这为在纳米尺度上对局部载流子浓度和迁移率进行定量研究打开了大门。太赫兹近场响应极其灵敏,在所探测体积内少于100个移动电子就能产生对比度。未来的改进可能使得甚至对单个电子或生物分子进行太赫兹表征成为可能。