Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia.
Centro de Investigaciones sobre Desertificación (CIDE), Consejo Superior de Investigaciones Científicas-Universitat de València-Generalitat Valenciana, Moncada (Valencia).
Physiol Plant. 2024 Nov-Dec;176(6):e14635. doi: 10.1111/ppl.14635.
Grapevine (Vitis vinifera L.) is the world's third most valuable horticultural crop, and the current environmental scenario is massively shifting the grape cultivation landscape. The increase in heatwaves and drought episodes alter fruit ripening, compromise grape yield and vine survival, intensifying the pressure on using limited water resources. ABA is a key phytohormone that reduces canopy transpiration and helps plants to cope with water deficit. However, the exogenous application of ABA is impractical because it suffers fast catabolism, and UV-induced isomerization abolishes its bioactivity. Consequently, there is an emerging field for developing molecules that act as ABA receptor agonists and modulate ABA signaling but have a longer half-life. We have explored the foliar application of the iSB09 and AMF4 agonists in the two grapevine cultivars cv. 'Bobal' and 'Tempranillo' to induce an ABA-like response to facilitate plant adaptation to drought. The results indicate that iSB09 and AMF4 act through the VviPYL1-like, VviPYL4-like, and VviPYL8-like ABA receptors to trigger stomatal closure, reduce plant transpiration, and increase water use efficiency. Structural and bioinformatic analysis of VviPYL1 in complex with ABA or these agonists revealed key structural determinants for efficient ligand binding, providing a mechanistic framework to understand receptor activation by the ligands. Physiological analyses further demonstrated that iSB09 has a more sustained effect on reducing transpiration than ABA, and agonist spraying of grapevine leaves protected PSII during drought stress. These findings offer innovative approaches to strengthen the vine's response to water stress and reduce plant consumptive water use under limited soil water conditions.
葡萄(Vitis vinifera L.)是世界上第三大最有价值的园艺作物,当前的环境状况正在大规模改变葡萄种植格局。热浪和干旱事件的增加改变了果实成熟,损害了葡萄产量和葡萄藤的存活,加剧了对有限水资源的利用压力。ABA 是一种关键的植物激素,可减少冠层蒸腾,帮助植物应对水分亏缺。然而,ABA 的外源应用是不切实际的,因为它会遭受快速代谢分解,而紫外线诱导的异构化会使其失去生物活性。因此,开发作为 ABA 受体激动剂并调节 ABA 信号但具有更长半衰期的分子的新兴领域已经出现。我们已经探索了在两个葡萄品种 cv. 'Bobal'和'Tempranillo'中叶面应用 iSB09 和 AMF4 激动剂,以诱导 ABA 样反应,促进植物适应干旱。结果表明,iSB09 和 AMF4 通过 VviPYL1 样、VviPYL4 样和 VviPYL8 样 ABA 受体起作用,触发气孔关闭,减少植物蒸腾,提高水分利用效率。VviPYL1 与 ABA 或这些激动剂结合的结构和生物信息学分析揭示了有效配体结合的关键结构决定因素,为理解配体对受体的激活提供了一个机制框架。生理分析进一步表明,iSB09 对减少蒸腾的作用比 ABA 更持久,葡萄叶片激动剂喷雾在干旱胁迫下保护 PSII。这些发现为加强葡萄对水胁迫的反应和在有限的土壤水条件下减少植物耗水量提供了创新方法。