Suppr超能文献

利用贝叶斯方法增强的深度学习进行不确定性感知的糖尿病视网膜病变检测。

Uncertainty-aware diabetic retinopathy detection using deep learning enhanced by Bayesian approaches.

作者信息

Akram Mohsin, Adnan Muhammad, Ali Syed Farooq, Ahmad Jameel, Yousef Amr, Alshalali Tagrid Abdullah N, Shaikh Zaffar Ahmed

机构信息

Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, 54770, Pakistan.

Electrical Engineering Department, University of Business and Technology, Jeddah, 21448, Saudi Arabia.

出版信息

Sci Rep. 2025 Jan 8;15(1):1342. doi: 10.1038/s41598-024-84478-x.

Abstract

Deep learning-based medical image analysis has shown strong potential in disease categorization, segmentation, detection, and even prediction. However, in high-stakes and complex domains like healthcare, the opaque nature of these models makes it challenging to trust predictions, particularly in uncertain cases. This sort of uncertainty can be crucial in medical image analysis; diabetic retinopathy is an example where even slight errors without an indication of confidence can have adverse impacts. Traditional deep learning models rely on single-point predictions, limiting their ability to provide uncertainty measures essential for robust clinical decision-making. To solve this issue, Bayesian approximation approaches have evolved and are gaining market traction. In this work, we implemented a transfer learning approach, building upon the DenseNet-121 convolutional neural network to detect diabetic retinopathy, followed by Bayesian extensions to the trained model. Bayesian approximation techniques, including Monte Carlo Dropout, Mean Field Variational Inference, and Deterministic Inference, were applied to represent the posterior predictive distribution, allowing us to evaluate uncertainty in model predictions. Our experiments on a combined dataset (APTOS 2019 + DDR) with pre-processed images showed that the Bayesian-augmented DenseNet-121 outperforms state-of-the-art models in test accuracy, achieving 97.68% for the Monte Carlo Dropout model, 94.23% for Mean Field Variational Inference, and 91.44% for the Deterministic model. We also measure how certain the predictions are, using an entropy and a standard deviation metric for each approach. We also evaluated the model using both AUC and accuracy scores at multiple data retention levels. In addition to overall performance boosts, these results highlight that Bayesian deep learning does not only improve classification accuracy in the detection of diabetic retinopathy but also reveals beneficial insights about how uncertainty estimation can help build more trustworthy clinical decision-making solutions.

摘要

基于深度学习的医学图像分析在疾病分类、分割、检测甚至预测方面都显示出了强大的潜力。然而,在医疗保健这样高风险和复杂的领域,这些模型的不透明性使得信任预测变得具有挑战性,尤其是在不确定的情况下。这种不确定性在医学图像分析中可能至关重要;糖尿病视网膜病变就是一个例子,即使是没有置信度指示的轻微错误也可能产生不利影响。传统的深度学习模型依赖于单点预测,限制了它们提供稳健临床决策所需的不确定性度量的能力。为了解决这个问题,贝叶斯近似方法不断发展并在市场上获得了吸引力。在这项工作中,我们实施了一种迁移学习方法,基于DenseNet - 121卷积神经网络来检测糖尿病视网膜病变,然后对训练好的模型进行贝叶斯扩展。应用了包括蒙特卡洛随机失活、平均场变分推理和确定性推理在内的贝叶斯近似技术来表示后验预测分布,使我们能够评估模型预测中的不确定性。我们在一个包含预处理图像的组合数据集(APTOS 2019 + DDR)上进行的实验表明,贝叶斯增强的DenseNet - 121在测试准确率方面优于现有模型,蒙特卡洛随机失活模型达到了97.68%,平均场变分推理模型达到了94.23%,确定性模型达到了91.44%。我们还使用熵和标准差指标来衡量每种方法预测的确定性程度。我们还在多个数据保留级别上使用AUC和准确率分数对模型进行了评估。除了整体性能提升外,这些结果还突出表明,贝叶斯深度学习不仅提高了糖尿病视网膜病变检测中的分类准确率,还揭示了关于不确定性估计如何有助于构建更值得信赖的临床决策解决方案的有益见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a54a/11711487/bd60583b1557/41598_2024_84478_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验