Suppr超能文献

基于超表面的图像分类:使用衍射深度神经网络

Metasurface-Based Image Classification Using Diffractive Deep Neural Network.

作者信息

Cheng Kaiyang, Deng Cong, Ye Fengyu, Li Hongqiang, Shen Fei, Fan Yuancheng, Gong Yubin

机构信息

International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China.

College of Electronic and Information Engineering, Tongji University, Shanghai 200092, China.

出版信息

Nanomaterials (Basel). 2024 Nov 12;14(22):1812. doi: 10.3390/nano14221812.

Abstract

The computer-assisted inverse design of photonic computing, especially by leveraging artificial intelligence algorithms, offers great convenience to accelerate the speed of development and improve calculation accuracy. However, traditional thickness-based modulation methods are hindered by large volume and difficult fabrication process, making it hard to meet the data-driven requirements of flexible light modulation. Here, we propose a diffractive deep neural network (DNN) framework based on a three-layer all-dielectric phased transmitarray as hidden layers, which can perform the classification of handwritten digits. By tailoring the radius of a silicon nanodisk of a meta-atom, the metasurface can realize the phase profile calculated by DNN and maintain a relative high transmittance of 0.9 at a wavelength of 600 nm. The designed image classifier consists of three layers of phase-only metasurfaces, each of which contains 1024 units, mimicking a fully connected neural network through the diffraction of light fields. The classification task of handwriting digits from the '0' to '5' dataset is verified, with an accuracy of over 90% on the blind test dataset, as well as demonstrated by the full-wave simulation. Furthermore, the performance of the more complex animal image classification task is also validated by increasing the number of neurons to enhance the connectivity of the neural network. This study may provide a possible solution for practical applications such as biomedical detection, image processing, and machine vision based on all-optical computing.

摘要

光子计算的计算机辅助逆向设计,尤其是借助人工智能算法,为加快开发速度和提高计算精度提供了极大便利。然而,传统的基于厚度的调制方法受到体积大及制造工艺困难的阻碍,难以满足灵活光调制的数据驱动要求。在此,我们提出一种基于三层全介质相控发射阵列作为隐藏层的衍射深度神经网络(DNN)框架,其可对手写数字进行分类。通过调整超原子中硅纳米盘的半径,超表面可实现由DNN计算出的相位分布,并在600纳米波长处保持0.9的相对高透过率。所设计的图像分类器由三层仅含相位的超表面组成,每层包含1024个单元,通过光场衍射模拟全连接神经网络。验证了从“0”到“5”数据集的手写数字分类任务,在盲测数据集上准确率超过90%,并通过全波模拟得到证明。此外,通过增加神经元数量以增强神经网络的连通性,还验证了更复杂的动物图像分类任务的性能。本研究可能为基于全光计算的生物医学检测、图像处理和机器视觉等实际应用提供一种可能的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce1d/11597900/16ab9a7af28e/nanomaterials-14-01812-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验