Suppr超能文献

利用心电图预测糖尿病患者的血糖异常

Predicting Dysglycemia in Patients with Diabetes Using Electrocardiogram.

作者信息

Song Ho-Jung, Han Ju-Hyuck, Cho Sung-Pil, Im Sung-Il, Kim Yong-Suk, Park Jong-Uk

机构信息

Department of Medical Engineering, Konyang University, 158 Gwanjeo-dong-ro, Seo-gu, Daejeon 32992, Republic of Korea.

MEZOO Co., Ltd., RM.808 200, Gieopdosi-ro, Jijeong-myeon, Wonju-si 26354, Republic of Korea.

出版信息

Diagnostics (Basel). 2024 Nov 7;14(22):2489. doi: 10.3390/diagnostics14222489.

Abstract

In this study, we explored the potential of predicting dysglycemia in patients who need to continuously manage blood glucose levels using a non-invasive method via electrocardiography (ECG). : The data were collected from patients with diabetes, and heart rate variability (HRV) features were extracted via ECG processing. A residual block-based one-dimensional convolution neural network model was used to predict dysglycemia. The dysglycemia prediction results at each time point, including at the time of blood glucose measurement, 15 min prior to measurement, and 30 min prior to measurement, exhibited no significant differences compared with the blood glucose measurement values. This result confirmed that the proposed artificial intelligence model for dysglycemia prediction performed well at each time point. Additionally, to determine the optimal number of features required for predicting dysglycemia, 77 HRV features were individually eliminated in the order of decreasing importance with respect to the prediction accuracy; the optimal number of features for the model to predict dysglycemia was determined to be 12. The dysglycemia prediction results obtained 30 min prior to measurement, which exhibited the highest prediction range in this study, were as follows: accuracy = 90.5, sensitivity = 87.52, specificity = 92.74, and precision = 89.86. Furthermore, we determined that no significant differences exist in the blood glucose prediction results reported in previous studies, wherein various vital signs and blood glucose values were used as model inputs, and the results obtained in this study, wherein only ECG data were used to predict dysglycemia.

摘要

在本研究中,我们探索了通过心电图(ECG)使用非侵入性方法预测需要持续管理血糖水平的患者血糖异常的潜力。数据收集自糖尿病患者,通过心电图处理提取心率变异性(HRV)特征。使用基于残差块的一维卷积神经网络模型来预测血糖异常。每个时间点的血糖异常预测结果,包括血糖测量时、测量前15分钟和测量前30分钟,与血糖测量值相比均无显著差异。这一结果证实了所提出的用于血糖异常预测的人工智能模型在每个时间点都表现良好。此外,为了确定预测血糖异常所需的最佳特征数量,按照对预测准确性的重要性从高到低的顺序逐个消除了77个HRV特征;确定该模型预测血糖异常的最佳特征数量为12个。在测量前30分钟获得的血糖异常预测结果,在本研究中表现出最高的预测范围,结果如下:准确率=90.5,灵敏度=87.52,特异性=92.74,精确率=89.86。此外,我们确定,在先前的研究中报告的血糖预测结果(其中使用各种生命体征和血糖值作为模型输入)与本研究中获得的结果(其中仅使用心电图数据预测血糖异常)之间不存在显著差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6278/11592764/a5f428a38265/diagnostics-14-02489-g001.jpg

相似文献

8
Using ECG signals for hypotensive episode prediction in trauma patients.利用心电图信号预测创伤患者的低血压发作。
Comput Methods Programs Biomed. 2022 Aug;223:106955. doi: 10.1016/j.cmpb.2022.106955. Epub 2022 Jun 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验