Suppr超能文献

机器学习算法在健康政策评估中估算倾向评分的应用:范围综述。

Machine Learning Algorithms to Estimate Propensity Scores in Health Policy Evaluation: A Scoping Review.

机构信息

Department of Knowledge Engineering, Federal University of Santa Catarina, Florianópolis 88035-972, Brazil.

Piccolo Mental Health, Florianópolis 88035-400, Brazil.

出版信息

Int J Environ Res Public Health. 2024 Nov 7;21(11):1484. doi: 10.3390/ijerph21111484.

Abstract

(1) Background: Quasi-experimental design has been widely used in causal inference for health policy impact evaluation. However, due to the non-randomized treatment used, there is great potential for bias in the assessment of the results, which can be reduced by using propensity score (PS) methods. In this context, this article aims to map the literature concerning the use of machine learning (ML) algorithms for propensity score estimation. (2) Methods: A scoping review was carried out in the PubMed, EMBASE, ACM Digital Library, IEEE Explore, LILACS, Web of Science, Scopus, Compendex, and gray literature (ProQuest and Google Scholar) databases, based on the PRISMA-ScR guidelines. This scoping review aims to identify ML models and their accuracy and the characteristics of studies on causal inference for health policy impacts, with a specific focus on PS estimation using ML. (3) Results: Seven studies were included in the review from 3018 references searched. In general, tree-based ML models were used for PS estimation. Most of the studies did not show or mention the performance metrics of the selected models, focusing instead on discussing the treatment effects under analysis. (4) Conclusions: Despite important aspects of model development and evaluation being under-reported, this scoping review provides insights into the recent use of ML algorithms in health policy impact evaluation.

摘要

(1) 背景:准实验设计已广泛应用于健康政策影响评估中的因果推断。然而,由于采用了非随机化处理,在评估结果时存在很大的偏差风险,可以通过使用倾向评分(PS)方法来降低。在这种情况下,本文旨在绘制关于使用机器学习(ML)算法进行倾向评分估计的文献图谱。

(2) 方法:根据 PRISMA-ScR 指南,在 PubMed、EMBASE、ACM 数字图书馆、IEEE Explore、LILACS、Web of Science、Scopus、Compendex 和灰色文献(ProQuest 和 Google Scholar)数据库中进行了范围综述。本范围综述旨在确定 ML 模型及其准确性,以及健康政策影响因果推断研究的特征,特别关注使用 ML 进行 PS 估计。

(3) 结果:从搜索到的 3018 篇参考文献中,共纳入了 7 项研究。总体而言,基于树的 ML 模型被用于 PS 估计。大多数研究没有展示或提及所选模型的性能指标,而是专注于讨论分析中的处理效果。

(4) 结论:尽管模型开发和评估的重要方面报告不足,但本范围综述提供了关于 ML 算法在健康政策影响评估中的最新应用的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5813/11593605/945cf8c71dad/ijerph-21-01484-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验