Suppr超能文献

抗菌药物耐药性中的数据驱动方法:机器学习解决方案

Data-Driven Approaches in Antimicrobial Resistance: Machine Learning Solutions.

作者信息

Sakagianni Aikaterini, Koufopoulou Christina, Koufopoulos Petros, Kalantzi Sofia, Theodorakis Nikolaos, Nikolaou Maria, Paxinou Evgenia, Kalles Dimitris, Verykios Vassilios S, Myrianthefs Pavlos, Feretzakis Georgios

机构信息

Intensive Care Unit, Sismanogelio General Hospital, 37 Sismanogleiou Str., 15126 Marousi, Greece.

Anesthesiology Department, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vass. Sofias 76, 11528 Athens, Greece.

出版信息

Antibiotics (Basel). 2024 Nov 6;13(11):1052. doi: 10.3390/antibiotics13111052.

Abstract

The emergence of antimicrobial resistance (AMR) due to the misuse and overuse of antibiotics has become a critical threat to global public health. There is a dire need to forecast AMR to understand the underlying mechanisms of resistance for the development of effective interventions. This paper explores the capability of machine learning (ML) methods, particularly unsupervised learning methods, to enhance the understanding and prediction of AMR. It aims to determine the patterns from AMR gene data that are clinically relevant and, in public health, capable of informing strategies. We analyzed AMR gene data in the PanRes dataset by applying unsupervised learning techniques, namely K-means clustering and Principal Component Analysis (PCA). These techniques were applied to identify clusters based on gene length and distribution according to resistance class, offering insights into the resistance genes' structural and functional properties. Data preprocessing, such as filtering and normalization, was conducted prior to applying machine learning methods to ensure consistency and accuracy. Our methodology included the preprocessing of data and reduction of dimensionality to ensure that our models were both accurate and interpretable. The unsupervised learning models highlighted distinct clusters of AMR genes, with significant patterns in gene length, including their associated resistance classes. Further dimensionality reduction by PCA allows for clearer visualizations of relationships among gene groupings. These patterns provide novel insights into the potential mechanisms of resistance, particularly the role of gene length in different resistance pathways. This study demonstrates the potential of ML, specifically unsupervised approaches, to enhance the understanding of AMR. The identified patterns in resistance genes could support clinical decision-making and inform public health interventions. However, challenges remain, particularly in integrating genomic data and ensuring model interpretability. Further research is needed to advance ML applications in AMR prediction and management.

摘要

由于抗生素的滥用和过度使用导致的抗菌药物耐药性(AMR)的出现已成为全球公共卫生的重大威胁。迫切需要预测AMR,以了解耐药性的潜在机制,从而制定有效的干预措施。本文探讨了机器学习(ML)方法,特别是无监督学习方法,在增强对AMR的理解和预测方面的能力。其目的是从AMR基因数据中确定与临床相关且在公共卫生方面能够为策略提供信息的模式。我们通过应用无监督学习技术,即K均值聚类和主成分分析(PCA),分析了PanRes数据集中的AMR基因数据。这些技术用于根据基因长度和耐药类别分布识别聚类,从而深入了解耐药基因的结构和功能特性。在应用机器学习方法之前进行了数据预处理,如过滤和归一化,以确保一致性和准确性。我们的方法包括数据预处理和降维,以确保我们的模型既准确又可解释。无监督学习模型突出了AMR基因的不同聚类,在基因长度方面有显著模式,包括其相关的耐药类别。通过PCA进一步降维可以更清晰地可视化基因分组之间的关系。这些模式为耐药性的潜在机制,特别是基因长度在不同耐药途径中的作用,提供了新的见解。本研究证明了ML,特别是无监督方法,在增强对AMR的理解方面的潜力。在耐药基因中识别出的模式可以支持临床决策并为公共卫生干预提供信息。然而,挑战仍然存在,特别是在整合基因组数据和确保模型可解释性方面。需要进一步研究以推进ML在AMR预测和管理中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f252/11590962/3f98261eb3d0/antibiotics-13-01052-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验