Suppr超能文献

利用机器学习进行脓毒症患者的多预后预测:来自MIMIC-IV数据库的证据。

Harness machine learning for multiple prognoses prediction in sepsis patients: evidence from the MIMIC-IV database.

作者信息

Zhang Su-Zhen, Ding Hai-Yi, Shen Yi-Ming, Shao Bing, Gu Yuan-Yuan, Chen Qiu-Hua, Zhang Hai-Dong, Pei Ying-Hao, Jiang Hua

机构信息

Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.

Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Han Zhong Road, Nanjing, Jiangsu Province, China.

出版信息

BMC Med Inform Decis Mak. 2025 Mar 31;25(1):152. doi: 10.1186/s12911-025-02976-y.

Abstract

BACKGROUND

Sepsis, a severe systemic response to infection, frequently results in adverse outcomes, underscoring the urgency for prompt and accurate prognostic tools. Machine learning methods such as logistic regression, random forests, and CatBoost, have shown potential in early sepsis prediction. The study aimed to create and verify a machine learning model capable of early prognostic identification of patients with sepsis in intensive care units (ICUs).

METHODS

Patients adhering to inclusion and exclusion criteria from the MIMIC-IV v2.2 database were divided into a training set and a validation set in a 7:3 ratio. Initially, we employed difference analysis to assess the significance of each variable and subsequently screened relevant features with multinomial logistic regression analysis. Logistic regression, random forest, and CatBoost algorithms were used to construct machine learning models to predict rapid recovery, chronic critical illness, and mortality in sepsis. The models were compared through several evaluation indexes including precision, accuracy, recall, F1 score, and the area under the receiver-operating-characteristic curve(AUC) in the validation set to select the optimal model. The best model was visualized and interpreted utilizing the Shapley Additive explanations method.

RESULTS

13174 sepsis patients were included. Post the screening process,26 clinical features were obtained to develop three distinct machine learning models. CatBoost exhibited superior performance among the three models with a weighted AUC of 0.771. The prognosis with the highest predictive performance was mortality (AUC = 0.804), followed by the prognoses of rapid recovery (AUC = 0.773) and chronic critical illness(AUC = 0.737). Urine output, respiratory rate, and temperature were the top three important features for the whole model prediction.

CONCLUSION

The machine learning model developed leveraging the CatBoost algorithm demonstrates the latent capacity to identify sepsis prognosis early. It also suggests that interventions targeting factors such as urine output, respiratory status, and temperature in the early stage may potentially alter the adverse prognosis of sepsis patients. However, the model will still require further external validation in the future.

摘要

背景

脓毒症是一种对感染的严重全身反应,常常导致不良后果,这凸显了对快速且准确的预后工具的迫切需求。诸如逻辑回归、随机森林和CatBoost等机器学习方法在早期脓毒症预测中已显示出潜力。本研究旨在创建并验证一个能够对重症监护病房(ICU)中的脓毒症患者进行早期预后识别的机器学习模型。

方法

符合MIMIC-IV v2.2数据库纳入和排除标准的患者按7:3的比例分为训练集和验证集。最初,我们采用差异分析来评估每个变量的显著性,随后通过多项逻辑回归分析筛选相关特征。使用逻辑回归、随机森林和CatBoost算法构建机器学习模型,以预测脓毒症患者的快速康复、慢性危重病和死亡率。通过验证集中的几个评估指标(包括精确率、准确率、召回率、F1分数和受试者工作特征曲线下面积(AUC))对模型进行比较,以选择最佳模型。利用Shapley加法解释方法对最佳模型进行可视化和解释。

结果

纳入了13174例脓毒症患者。经过筛选过程,获得了26个临床特征以开发三个不同的机器学习模型。CatBoost在三个模型中表现出卓越性能,加权AUC为0.771。预测性能最高的预后是死亡率(AUC = 0.804),其次是快速康复的预后(AUC = 0.773)和慢性危重病的预后(AUC = 0.737)。尿量、呼吸频率和体温是整个模型预测中最重要的三个特征。

结论

利用CatBoost算法开发的机器学习模型显示出早期识别脓毒症预后的潜在能力。这也表明,针对尿量、呼吸状态和体温等因素的早期干预可能会改变脓毒症患者的不良预后。然而,该模型未来仍需要进一步的外部验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3366/11959728/4b9969f7f87e/12911_2025_2976_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验