Alam Khadija, Din Israr Ud, Tariq Shehbaz, Hayat Kiran, Khan Fahim Ullah, Khan Majid, Mohamed Heba I
Institute of Biotechnology and Genetic Engineering, Faculty of Crop Production Sciences, The University of Agriculture Peshawar, Peshawar, 25130, Pakistan.
Department of Biosciences, COMSATS University , Islamabad, Pakistan.
Appl Biochem Biotechnol. 2025 Mar;197(3):1630-1649. doi: 10.1007/s12010-024-05102-2. Epub 2024 Nov 27.
Antimicrobial resistance is one of the principal global health problems, and it is imperative to develop new drugs to reduce the spread of antimicrobial-resistant microorganisms. The flower extract of Butea monosperma and the root extract of Glycyrrhiza glabra are used to green synthesize zinc oxide nanoparticles (ZnO-NPs) using zinc acetate dihydrate. We characterized the biosynthesized ZnO-NPs using various techniques. The UV-visible spectra of ZnO-NPs using flower extract of B. monosperma and root extract of G. glabra were observed at 276 and 261 nm, respectively. Fourier transform infrared spectroscopy (FT-IR) analysis depicted different functional groups. The size of the biosynthesized ZnO-NPs was calculated at 19.72 nm. Moreover, scanning electron microscopy (SEM) analysis showed that ZnO-NPs synthesized from flower extracts of B. monosperma were agglomerated in rod-shaped clusters. The nanoparticles synthesized from G. glabra were dispersed and semi-spherical in shape. The most pronounced increases in antioxidant activity against 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid [ABTS] were detected at the high concentrations of ZnO-NPs (800 µg/ml) biosynthesized from B. monosperma (48.8%) and G. glabra (38.8%). Antibiotics revealed smaller inhibition zones, while the higher concentrations of ZnO-NPs (800 µg/ml) biosynthesized from B. monosperma and G. glabra displayed strong antibacterial activity against Bacillus subtilis, Escherichia coli, and Klebsiella pneumoniae. The results indicated that the ZnO-NPs synthesized using B. monosperma and G. glabra extracts demonstrated significant antibacterial and antioxidant properties. This green synthesis approach highlights plant-mediated ZnO-NPs potential as effective agents for biomedical applications and offers an eco-friendly alternative to conventional chemical synthesis methods.
抗菌耐药性是全球主要的健康问题之一,开发新药以减少抗菌耐药微生物的传播势在必行。用二水合醋酸锌,利用紫铆花提取物和光果甘草根提取物绿色合成氧化锌纳米颗粒(ZnO-NPs)。我们使用各种技术对生物合成的ZnO-NPs进行了表征。使用紫铆花提取物和光果甘草根提取物的ZnO-NPs的紫外可见光谱分别在276和261nm处观察到。傅里叶变换红外光谱(FT-IR)分析描绘了不同的官能团。生物合成的ZnO-NPs的尺寸计算为19.72nm。此外,扫描电子显微镜(SEM)分析表明,由紫铆花提取物合成的ZnO-NPs聚集成长棒状簇。由光果甘草合成的纳米颗粒分散且呈半球形。在高浓度(800μg/ml)由紫铆花(48.8%)和光果甘草(38.8%)生物合成的ZnO-NPs中,检测到对2,2'-偶氮二(3-乙基苯并噻唑啉-6-磺酸)[ABTS]的抗氧化活性有最显著的增加。抗生素显示出较小的抑菌圈,而由紫铆花和光果甘草生物合成的较高浓度(800μg/ml)的ZnO-NPs对枯草芽孢杆菌、大肠杆菌和肺炎克雷伯菌表现出很强的抗菌活性。结果表明,使用紫铆花和光果甘草提取物合成的ZnO-NPs具有显著的抗菌和抗氧化性能。这种绿色合成方法突出了植物介导的ZnO-NPs作为生物医学应用有效剂的潜力,并为传统化学合成方法提供了一种环保替代方案。