Suppr超能文献

机器学习驱动的蓝藻生物活性化合物发现与数据库:治疗与生物修复资源

Machine Learning-Driven Discovery and Database of Cyanobacteria Bioactive Compounds: A Resource for Therapeutics and Bioremediation.

作者信息

Soares Renato, Azevedo Luísa, Vasconcelos Vitor, Pratas Diogo, Sousa Sérgio F, Carneiro João

机构信息

CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal.

Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto 4169-007, Portugal.

出版信息

J Chem Inf Model. 2024 Dec 23;64(24):9576-9593. doi: 10.1021/acs.jcim.4c00995. Epub 2024 Nov 27.

Abstract

Cyanobacteria strains have the potential to produce bioactive compounds that can be used in therapeutics and bioremediation. Therefore, compiling all information about these compounds to consider their value as bioresources for industrial and research applications is essential. In this study, a searchable, updated, curated, and downloadable database of cyanobacteria bioactive compounds was designed, along with a machine-learning model to predict the compounds' targets of newly discovered molecules. A Python programming protocol obtained 3431 cyanobacteria bioactive compounds, 373 unique protein targets, and 3027 molecular descriptors. PaDEL-descriptor, Mordred, and Drugtax software were used to calculate the chemical descriptors for each bioactive compound database record. The biochemical descriptors were then used to determine the most promising protein targets for human therapeutic approaches and environmental bioremediation using the best machine learning (ML) model. The creation of our database, coupled with the integration of computational docking protocols, represents an innovative approach to understanding the potential of cyanobacteria bioactive compounds. This resource, adhering to the findability, accessibility, interoperability, and reuse of digital assets (FAIR) principles, is an excellent tool for pharmaceutical and bioremediation researchers. Moreover, its capacity to facilitate the exploration of specific compounds' interactions with environmental pollutants is a significant advancement, aligning with the increasing reliance on data science and machine learning to address environmental challenges. This study is a notable step forward in leveraging cyanobacteria for both therapeutic and ecological sustainability.

摘要

蓝藻菌株有潜力产生可用于治疗和生物修复的生物活性化合物。因此,汇总有关这些化合物的所有信息,以评估它们作为工业和研究应用生物资源的价值至关重要。在本研究中,设计了一个可搜索、更新、经过整理且可下载的蓝藻生物活性化合物数据库,以及一个机器学习模型来预测新发现分子的化合物靶点。一个Python编程协议获取了3431种蓝藻生物活性化合物、373个独特的蛋白质靶点和3027个分子描述符。使用PaDEL-descriptor、Mordred和Drugtax软件为每个生物活性化合物数据库记录计算化学描述符。然后,利用最佳机器学习(ML)模型,将这些生化描述符用于确定人类治疗方法和环境生物修复中最有前景的蛋白质靶点。我们数据库的创建,再加上计算对接协议的整合,代表了一种理解蓝藻生物活性化合物潜力的创新方法。该资源遵循数字资产的可发现性、可访问性、互操作性和可重用性(FAIR)原则,是制药和生物修复研究人员的优秀工具。此外,它促进探索特定化合物与环境污染物相互作用的能力是一项重大进展,符合日益依赖数据科学和机器学习来应对环境挑战的趋势。这项研究在利用蓝藻实现治疗和生态可持续性方面向前迈出了显著的一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验