Suppr超能文献

EDock-ML:一个使用集成对接与机器学习辅助药物发现的网络服务器。

EDock-ML: A web server for using ensemble docking with machine learning to aid drug discovery.

机构信息

Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA.

出版信息

Protein Sci. 2021 May;30(5):1087-1097. doi: 10.1002/pro.4065. Epub 2021 Mar 25.

Abstract

EDock-ML is a web server that facilitates the use of ensemble docking with machine learning to help decide whether a compound is worthwhile to be considered further in a drug discovery process. Ensemble docking provides an economical way to account for receptor flexibility in molecular docking. Machine learning improves the use of the resulting docking scores to evaluate whether a compound is likely to be useful. EDock-ML takes a bottom-up approach in which machine-learning models are developed one protein at a time to improve predictions for the proteins included in its database. Because the machine-learning models are intended to be used without changing the docking and model parameters with which the models were trained, novice users can use it directly without worrying about what parameters to choose. A user simply submits a compound specified by an ID from the ZINC database (Sterling, T.; Irwin, J. J., J Chem Inf Model 2015, 55[11], 2,324-2,337.) or upload a file prepared by a chemical drawing program and receives an output helping the user decide the likelihood of the compound to be active or inactive for a drug target. EDock-ML can be accessed freely at edock-ml.umsl.edu.

摘要

EDock-ML 是一个网络服务器,它使用集成对接和机器学习来帮助决定化合物是否值得在药物发现过程中进一步考虑。集成对接提供了一种经济的方法来考虑受体在分子对接中的灵活性。机器学习提高了对接评分的使用,以评估化合物是否可能有用。EDock-ML 采用自下而上的方法,一次开发一个蛋白质的机器学习模型,以提高其数据库中包含的蛋白质的预测能力。由于机器学习模型旨在在不改变与模型一起训练的对接和模型参数的情况下使用,因此新手用户可以直接使用它,而不必担心选择哪些参数。用户只需提交来自 ZINC 数据库的 ID 指定的化合物(Sterling,T.;Irwin,J. J.,J Chem Inf Model 2015,55[11],2,324-2,337.),或上传由化学绘图程序准备的文件,并接收输出,帮助用户决定化合物对药物靶标是否具有活性或非活性的可能性。EDock-ML 可在 edock-ml.umsl.edu 上免费访问。

相似文献

2
CovalentDock Cloud: a web server for automated covalent docking.CovalentDock Cloud:一个用于自动共价对接的网络服务器。
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W329-32. doi: 10.1093/nar/gkt406. Epub 2013 May 15.
7
Accelerating Molecular Docking using Machine Learning Methods.使用机器学习方法加速分子对接。
Mol Inform. 2024 Jun;43(6):e202300167. doi: 10.1002/minf.202300167. Epub 2024 Jun 8.

本文引用的文献

3
Inexpensive Method for Selecting Receptor Structures for Virtual Screening.用于虚拟筛选的受体结构的廉价选择方法。
J Chem Inf Model. 2016 Jan 25;56(1):21-34. doi: 10.1021/acs.jcim.5b00299. Epub 2015 Dec 29.
4
ZINC 15--Ligand Discovery for Everyone.锌15——面向大众的配体发现平台。
J Chem Inf Model. 2015 Nov 23;55(11):2324-37. doi: 10.1021/acs.jcim.5b00559. Epub 2015 Nov 9.
5
Flexible receptor docking for drug discovery.用于药物发现的柔性受体对接
Expert Opin Drug Discov. 2015;10(11):1189-200. doi: 10.1517/17460441.2015.1078308. Epub 2015 Aug 26.
8
Molecular docking to flexible targets.与柔性靶点的分子对接
Methods Mol Biol. 2015;1215:445-69. doi: 10.1007/978-1-4939-1465-4_20.
9
Multi-conformer ensemble docking to difficult protein targets.针对困难蛋白质靶点的多构象集合对接
J Phys Chem B. 2015 Jan 22;119(3):1026-34. doi: 10.1021/jp506511p. Epub 2014 Sep 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验