Rodzinka T, Dionis E, Calmels L, Beldjoudi S, Béguin A, Guéry-Odelin D, Allard B, Sugny D, Gauguet A
Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, UniversitéToulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062, Toulouse, France.
Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS UMR 6303, Université de Bourgogne, BP 47870, F-21078, Dijon, France.
Nat Commun. 2024 Nov 27;15(1):10281. doi: 10.1038/s41467-024-54539-w.
The effective control of atomic coherence with cold atoms has made atom interferometry an essential tool for quantum sensors and precision measurements. The performance of these interferometers is closely related to the operation of large wave packet separations. We present here a novel approach for atomic beam splitters based on the stroboscopic stabilization of quantum states in an accelerated optical lattice. The corresponding Floquet state is generated by optimal control protocols. In this way, we demonstrate an unprecedented Large Momentum Transfer (LMT) interferometer, with a momentum separation of 600 photon recoils (600 ℏk) between its two arms. Each LMT beam splitter is realized in a remarkably short time (2 ms) and is highly robust against the initial velocity dispersion of the wave packet and lattice depth fluctuations. Our study shows that Floquet engineering is a promising tool for exploring new frontiers in quantum physics at large scales, with applications in quantum sensing and testing fundamental physics.
利用冷原子对原子相干性进行有效控制,使原子干涉测量成为量子传感器和精密测量的重要工具。这些干涉仪的性能与大波包分离的操作密切相关。我们在此提出一种基于加速光学晶格中量子态频闪稳定的新型原子束分离器方法。相应的弗洛凯态由最优控制协议生成。通过这种方式,我们展示了一种前所未有的大动量转移(LMT)干涉仪,其两臂之间的动量分离为600个光子反冲(600 ℏk)。每个LMT束分离器在极短的时间(2毫秒)内实现,并且对波包的初始速度色散和晶格深度波动具有高度鲁棒性。我们的研究表明,弗洛凯工程是探索大规模量子物理新前沿的一个有前途的工具,可应用于量子传感和基础物理测试。