Lee Kun-Mu, Lin Chia-Hui, Chang Chia-Chi, Yang Ting-Yu, Chiu Wei-Hao, Chu Wei-Chen, Chang Ya-Ho, Li Sie-Rong, Lu Shih-I, Hsieh Hsiao-Chi, Liau Kang-Ling, Hu Chia Hui, Chen Chih-Hung, Liu Yun-Shuo, Chou Wei-Chun, Lee Mandy M, Sun Shih-Sheng, Tao Yu-Tai, Lin Yan-Duo
Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302, Taiwan.
Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, 33302, Taiwan.
Adv Sci (Weinh). 2025 Jan;12(3):e2410666. doi: 10.1002/advs.202410666. Epub 2024 Nov 28.
The structural modification of hole-transporting materials (HTMs) is an effective strategy for enhancing photovoltaic performance in perovskite solar cells (PSCs). Herein, a series of dithienopyran (DTP)-based HTMs (Me-H, Ph-H, CF3-H, CF3-mF, and CF3-oF) is designed and synthesized by substituting different functional groups on the DTP unit and are used fabricating PSCs. In comparison with Me-H having two methyl substituents on the dithienopyrano ring, the Ph-H having two phenyl substituents on the ring exhibits higher PCEs. Notably, the incorporation of trifluoromethyl groups in CF3-H endows the molecule with a larger dipole moment, deeper HOMO energy level, better film morphology, closer molecular stacking, more efficient defect-passivation, enhanced hydrophobicity, and better photovoltaic performance when compared with the Ph-H counterpart. Furthermore, the HTMs of CF3-mF and CF3-oF, which feature fluorine-substituted triphenylamine, demonstrated excellent film-forming properties, more suitable energy levels, enhanced charge mobility, and improved passivation of the buried interface between HTMs and perovskite. As a result, PSCs employing CF3-mF and CF3-oF gave impressive PCEs of 23.41 and 24.13%, respectively. In addition, the large-area (1.00 cm) PSCs based on CF3-oF achieved a PCE of 22.31%. Moreover, the PSCs devices with CF3 series HTMs exhibited excellent long-term stability under different conditions.
空穴传输材料(HTMs)的结构修饰是提高钙钛矿太阳能电池(PSCs)光伏性能的有效策略。在此,通过在二噻吩并吡喃(DTP)单元上取代不同的官能团,设计并合成了一系列基于DTP的HTMs(Me-H、Ph-H、CF3-H、CF3-mF和CF3-oF),并用于制备PSCs。与在二噻吩并吡喃环上有两个甲基取代基的Me-H相比,在环上有两个苯基取代基的Ph-H表现出更高的光电转换效率(PCEs)。值得注意的是,与Ph-H相比,CF3-H中三氟甲基的引入使分子具有更大的偶极矩、更深的最高占据分子轨道(HOMO)能级、更好的薄膜形态、更紧密的分子堆积、更有效的缺陷钝化、增强的疏水性和更好的光伏性能。此外,具有氟取代三苯胺的CF3-mF和CF3-oF的HTMs表现出优异的成膜性能、更合适的能级、增强的电荷迁移率以及改善的HTMs与钙钛矿之间掩埋界面的钝化。结果,采用CF3-mF和CF3-oF的PSCs分别给出了令人印象深刻的23.41%和24.13%的光电转换效率。此外,基于CF3-oF的大面积(1.00 cm)PSCs实现了22.31%的光电转换效率。此外,具有CF3系列HTMs的PSCs器件在不同条件下表现出优异的长期稳定性。