Brown Kristen T, Dellaert Zoe, Martynek Marcelina P, Durian Julia, Mass Tali, Putnam Hollie M, Barott Katie L
Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
School of Biological Sciences, University of Queensland, St. Lucia, Queensland, Australia.
Mol Ecol. 2025 Jan;34(2):e17603. doi: 10.1111/mec.17603. Epub 2024 Nov 28.
Corals residing in habitats that experience high-frequency seawater pCO variability may possess an enhanced capacity to cope with ocean acidification, yet we lack a clear understanding of the molecular toolkit enabling acclimatisation to environmental extremes or how life-long exposure to pCO variability influences biomineralisation. Here, we examined the gene expression responses and micro-skeletal characteristics of Pocillopora damicornis originating from the reef flat and reef slope of Heron Island, southern Great Barrier Reef. The reef flat and reef slope had similar mean seawater pCO, but the reef flat experienced twice the mean daily pCO amplitude (range of 797 v. 399 μatm day, respectively). A controlled mesocosm experiment was conducted over 8 weeks, exposing P. damicornis from the reef slope and reef flat to stable (218 ± 9) or variable (911 ± 31) diel pCO fluctuations (μatm; mean ± SE). At the end of the exposure, P. damicornis originating from the reef flat demonstrated frontloading of 25% of the expressed genes regardless of treatment conditions, suggesting constitutive upregulation. This included higher expression of critical biomineralisation-related genes such as carbonic anhydrases, skeletal organic matrix proteins, and bicarbonate transporters. The observed frontloading corresponded with a 40% increase of the fastest deposited areas of the skeleton in reef flat corals grown under non-native, stable pCO conditions compared to reef slope conspecifics, suggesting a compensatory response that stems from acclimatisation to environmental extremes and/or relief from stressful pCO fluctuations. Under escalating ocean warming and acidification, corals acclimated to environmental variability warrant focused investigation and represent ideal candidates for active interventions to build reef resilience while societies adopt strict policies to limit climate change.
生活在海水pCO频繁变化环境中的珊瑚可能具有更强的应对海洋酸化的能力,但我们对使其适应极端环境的分子机制,或终生暴露于pCO变化如何影响生物矿化缺乏清晰的认识。在这里,我们研究了来自大堡礁南部赫伦岛礁坪和礁坡的鹿角杯形珊瑚的基因表达反应和微骨骼特征。礁坪和礁坡的平均海水pCO相似,但礁坪的日平均pCO振幅是礁坡的两倍(分别为797 μatm和399 μatm)。我们进行了为期8周的受控中尺度实验,将来自礁坡和礁坪的鹿角杯形珊瑚暴露于稳定(218±9)或可变(911±31)的昼夜pCO波动(μatm;平均值±标准误差)中。在暴露结束时,无论处理条件如何,来自礁坪的鹿角杯形珊瑚都有25%的表达基因出现预上调,这表明是组成性上调。这包括关键的生物矿化相关基因如碳酸酐酶、骨骼有机基质蛋白和碳酸氢盐转运体的更高表达。观察到的预上调与在非原生、稳定pCO条件下生长的礁坪珊瑚骨骼最快沉积区域相比,礁坡同种珊瑚增加了40%相对应,这表明这是一种因适应极端环境和/或从压力性pCO波动中缓解而产生的补偿反应。在海洋变暖和酸化不断加剧的情况下,适应环境变化的珊瑚值得重点研究,并且在社会采取严格政策限制气候变化的同时,它们是构建珊瑚礁恢复力的积极干预的理想候选对象。