Alves Christiano R R, Das Sabyasachi, Krishnan Vijai, Ha Leillani L, Fox Lauren R, Stutzman Hannah E, Shamber Claire E, Kalailingam Pazhanichamy, McCarthy Siobhan, Lino Cardenas Christian L, Fong Claire E, Imai Takahiko, Mitra Sunayana, Yun Shuqi, Wood Rachael K, Benning Friederike M C, Lawton Joseph, Kim Nahye, Silverstein Rachel A, da Silva Joana Ferreira, de la Cruz Demitri, Richa Rashmi, Malhotra Rajeev, Chung David Y, Chao Luke H, Tsai Shengdar Q, Maguire Casey A, Lindsay Mark E, Kleinstiver Benjamin P, Musolino Patricia L
Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
bioRxiv. 2024 Nov 11:2024.11.11.621817. doi: 10.1101/2024.11.11.621817.
Genetic vascular disorders are prevalent diseases that have diverse etiologies and few treatment options. Pathogenic missense mutations in the alpha actin isotype 2 gene () primarily affect smooth muscle cell (SMC) function and cause multisystemic smooth muscle dysfunction syndrome (MSMDS), a genetic vasculopathy that is associated with stroke, aortic dissection, and death in childhood. Here, we explored genome editing to correct the most common MSMDS-causative mutation R179H. In a first-in-kind approach, we performed mutation-specific protein engineering to develop a bespoke CRISPR-Cas9 enzyme with enhanced on-target activity against the R179H sequence. To directly correct the R179H mutation, we screened dozens of configurations of base editors (comprised of Cas9 enzymes, deaminases, and gRNAs) to develop a highly precise corrective A-to-G edit with minimal deleterious bystander editing that is otherwise prevalent when using wild-type SpCas9 base editors. We then created a murine model of MSMDS that exhibits phenotypes consistent with human patients, including vasculopathy and premature death, to explore the therapeutic potential of this base editing strategy. Delivery of the customized base editor via an engineered SMC-tropic adeno-associated virus (AAV-PR) vector substantially prolonged survival and rescued systemic phenotypes across the lifespan of MSMDS mice, including in the vasculature, aorta, and brain. Together, our optimization of a customized base editor highlights how bespoke CRISPR-Cas enzymes can enhance on-target correction while minimizing bystander edits, culminating in a precise editing approach that may enable a long-lasting treatment for patients with MSMDS.
遗传性血管疾病是常见疾病,病因多样且治疗选择有限。α-肌动蛋白同种型2基因()中的致病性错义突变主要影响平滑肌细胞(SMC)功能,并导致多系统平滑肌功能障碍综合征(MSMDS),这是一种与中风、主动脉夹层和儿童期死亡相关的遗传性血管病。在此,我们探索了基因组编辑以纠正最常见的导致MSMDS的R179H突变。我们采用了一种首创的方法,进行了针对特定突变的蛋白质工程,以开发一种定制的CRISPR-Cas9酶,其对R179H序列具有增强的靶向活性。为了直接纠正R179H突变,我们筛选了数十种碱基编辑器配置(由Cas9酶、脱氨酶和引导RNA组成),以开发一种高度精确的A到G纠正编辑,同时尽量减少有害的旁观者编辑,而在使用野生型SpCas9碱基编辑器时,这种旁观者编辑很常见。然后,我们创建了一个MSMDS小鼠模型,该模型表现出与人类患者一致的表型,包括血管病和过早死亡,以探索这种碱基编辑策略的治疗潜力。通过工程化的靶向SMC的腺相关病毒(AAV-PR)载体递送定制的碱基编辑器,可显著延长MSMDS小鼠的生存期,并在其整个生命周期内挽救包括血管、主动脉和大脑在内的全身表型。总之,我们对定制碱基编辑器的优化突出了定制的CRISPR-Cas酶如何在增强靶向纠正的同时尽量减少旁观者编辑,最终形成一种精确的编辑方法,有望为MSMDS患者提供持久的治疗。
Psychopharmacol Bull. 2024-7-8
Sci Transl Med. 2024-10-16
Nat Chem Biol. 2025-1
Nat Chem Biol. 2024-12
Nat Commun. 2024-4-30
Proc Natl Acad Sci U S A. 2024-3-12
Nat Nanotechnol. 2024-4
Nat Commun. 2023-10-4
Pediatr Neurol. 2023-12