Jain Kanishk, Kougnassoukou Tchara Pata-Eting, Mengistalem Amanuel B, Holland Aidan P, Bowman Christopher N, Marunde Matthew R, Popova Irina K, Cooke Spencer W, Krajewski Krzysztof, Keogh Michael-Christopher, Lambert Jean-Philippe, Strahl Brian D
Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN, USA.
Department of Molecular Medicine and Cancer Research Center, Université Laval, Quebec City, QC, Canada; CHU de Québec Research Center, Quebec City, QC, Canada.
bioRxiv. 2024 Nov 20:2024.11.20.623956. doi: 10.1101/2024.11.20.623956.
Plant homeodomain (PHD) fingers are critical effectors of histone post-translational modifications (PTMs), acting as regulators of gene expression and genome integrity, and frequently presenting in human disease. While most PHD fingers recognize unmodified and methylated states of histone H3 lysine 4 (H3K4), the specific functions of many of the over 100 PHD finger-containing proteins in humans remain poorly understood, despite their significant implications in disease processes. In this study, we undertook a comprehensive analysis of one such poorly characterized PHD finger-containing protein, PHRF1. Using biochemical, molecular, and cellular approaches, we show that PHRF1 robustly binds to histone H3, specifically at its N-terminal region. Through RNA-seq and proteomic analyses, we also find that PHRF1 is intricately involved in transcriptional and RNA splicing regulation and plays a significant role in DNA damage response (DDR). Crucially, mutagenesis of proline 221 to leucine (P221L) in the PHD finger of PHRF1 abolishes histone interaction and fails to rescue defective DDR. These findings underscore the importance of PHRF1-H3 interaction in maintaining genome integrity and provide insight into how PHD fingers contribute to chromatin biology.
植物同源结构域(PHD)指是组蛋白翻译后修饰(PTM)的关键效应因子,作为基因表达和基因组完整性的调节因子,且频繁出现在人类疾病中。虽然大多数PHD指识别组蛋白H3赖氨酸4(H3K4)的未修饰和甲基化状态,但人类中100多种含PHD指的蛋白质中许多的具体功能仍知之甚少,尽管它们在疾病过程中有重要意义。在本研究中,我们对一种特征描述较少的含PHD指的蛋白质PHRF1进行了全面分析。使用生化、分子和细胞方法,我们表明PHRF1能强烈结合组蛋白H3,特别是在其N端区域。通过RNA测序和蛋白质组分析,我们还发现PHRF1复杂地参与转录和RNA剪接调控,并在DNA损伤反应(DDR)中起重要作用。至关重要的是,将PHRF1的PHD指中的脯氨酸221突变为亮氨酸(P221L)会消除组蛋白相互作用,并且无法挽救有缺陷的DDR。这些发现强调了PHRF1 - H3相互作用在维持基因组完整性中的重要性,并深入了解了PHD指如何对染色质生物学做出贡献。