Kalantari Hamidreza, Turner Raymond J
Department of Biological Sciences, Microbial Biochemistry Laboratory, University of Calgary, Calgary, NW, Canada.
Department of Microbiology, Islamic Azad University, Tehran, Iran.
Front Chem. 2024 Nov 13;12:1482102. doi: 10.3389/fchem.2024.1482102. eCollection 2024.
This study explores the synthesis and characterization of gold nanoparticles (AuNPs) using green and chemical methods, employing ginger extract and curcumin as reducing agents, in comparison to sodium citrate reduction. The biosynthesized AuNPs synthesized with ginger extract exhibited an average hydrodynamic diameter of 15 and 10 nm for curcumin-conjugated AuNPs, while chemically synthesized AuNPs with sodium citrate displayed an average size of 10 nm. Assessments via Zeta potential measurements revealed negative surface charges across all samples, with the curcumin-conjugated AuNPs showing -36.3 mV, ginger extract-synthesized AuNPs showing -31.7 mV, and chemically produced gold nanoparticles having a surface charge of -40.4 mV. Transmission Electron Microscopy (TEM) confirmed spherical morphologies for the synthesized nanoparticles,and it revealed the presence of biomolecules embedded within the nanoparticles synthesized using biological materials, whereas chemically synthesized AuNPs lacked such features. The FTIR spectra of the biosynthesized AuNPs highlighted the presence of phenolic and aromatic compounds from the ginger extract and curcumin, indicating their role in coating the nanoparticles. Gas chromatography-mass spectrometry (GC-MS) analysis identified gingerol as a key component in the ginger extract, contributing to nanoparticle capping. The antimicrobial efficacy of the AuNPs was evaluated against , , and , revealing superior activity for curcumin-AuNPs, with ginger-AuNPs also outperforming chemically synthesized counterparts. These findings confirm the advantages of biological approaches, using a plant extract like ginger and pure curcumin suspension, for better size distribution when used as reducing agents, along with improved antimicrobial efficacy compared to chemically produced gold nanoparticles synthesized with sodium citrate. This study also highlight the potential of green-synthesized AuNPs in biomedical applications, due to their enhanced stability from higher surface charge and the repeatability of biological methods.
本研究探索了使用绿色方法和化学方法合成及表征金纳米颗粒(AuNP),以姜提取物和姜黄素作为还原剂,并与柠檬酸钠还原法进行比较。用姜提取物生物合成的AuNP,姜黄素共轭AuNP的平均流体动力学直径为15纳米和10纳米,而用柠檬酸钠化学合成的AuNP平均尺寸为10纳米。通过zeta电位测量评估发现,所有样品的表面电荷均为负,姜黄素共轭AuNP为-36.3毫伏,姜提取物合成的AuNP为-31.7毫伏,化学合成的金纳米颗粒表面电荷为-40.4毫伏。透射电子显微镜(TEM)证实合成的纳米颗粒为球形形态,并且揭示了在使用生物材料合成的纳米颗粒中存在嵌入的生物分子,而化学合成的AuNP缺乏这些特征。生物合成的AuNP的傅里叶变换红外光谱(FTIR)突出显示了来自姜提取物和姜黄素的酚类和芳香族化合物的存在,表明它们在包覆纳米颗粒方面的作用。气相色谱-质谱联用(GC-MS)分析确定姜辣素是姜提取物中的关键成分,有助于纳米颗粒的封端。评估了AuNP对 、 和 的抗菌效果,结果显示姜黄素-AuNP具有卓越的活性,姜-AuNP也优于化学合成的同类产品。这些发现证实了使用姜等植物提取物和纯姜黄素悬浮液等生物方法作为还原剂时,在尺寸分布方面具有优势,并且与用柠檬酸钠化学合成的金纳米颗粒相比,抗菌效果有所提高。本研究还强调了绿色合成的AuNP在生物医学应用中的潜力,这是由于其较高的表面电荷增强了稳定性以及生物方法的可重复性。