Smart Conrad L, Pearson Tanner G, Liang Zexi, Lim Melody X, Abdelrahman Mohamed I, Monticone Francesco, Cohen Itai, McEuen Paul L
Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, USA.
School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
Science. 2024 Nov 29;386(6725):1031-1037. doi: 10.1126/science.adr2177. Epub 2024 Nov 28.
Microscopic robots with features comparable with the wavelength of light offer new ways of probing the microscopic world and controlling light at the microscale. We introduce a new class of magnetically controlled microscopic robots (microbots) that operate at the visible-light diffraction limit, which we term diffractive robots. We combined nanometer-thick mechanical membranes, programmable nanomagnets, and diffractive optical elements to create untethered microbots small enough to diffract visible light and flexible enough to undergo complex reconfigurations in millitesla-scale magnetic fields. We demonstrated their applications, including subdiffractive imaging by using a variant of structured illumination microscopy, tunable diffractive optical elements for beam steering and focusing, and force sensing with piconewton sensitivity.
具有与光波长相当特征的微观机器人为探测微观世界和在微观尺度上控制光提供了新方法。我们引入了一类新型的磁控微观机器人(微型机器人),它们在可见光衍射极限下运行,我们将其称为衍射机器人。我们将纳米厚的机械膜、可编程纳米磁体和衍射光学元件相结合,制造出了足够小以衍射可见光且足够灵活以在毫特斯拉级磁场中进行复杂重构的无系绳微型机器人。我们展示了它们的应用,包括通过使用结构照明显微镜的一种变体进行亚衍射成像、用于光束转向和聚焦的可调衍射光学元件以及具有皮牛顿灵敏度的力传感。