Hrtonova Valentina, Nejedly Petr, Travnicek Vojtech, Cimbalnik Jan, Matouskova Barbora, Pail Martin, Peter-Derex Laure, Grova Christophe, Gotman Jean, Halamek Josef, Jurak Pavel, Brazdil Milan, Klimes Petr, Frauscher Birgit
First Department of Neurology, Faculty of Medicine, Masaryk University, Pekarska 53, 602 00 Brno, Czech Republic; Institute of Scientific Instruments of the CAS, v. v. i., Kralovopolska 147, 612 00 Brno, Czech Republic; Department of Neurology, Duke University School of Medicine, 2424 Erwin Rd, Durham, NC 27705, the United States of America.
First Department of Neurology, Faculty of Medicine, Masaryk University, Pekarska 53, 602 00 Brno, Czech Republic; Institute of Scientific Instruments of the CAS, v. v. i., Kralovopolska 147, 612 00 Brno, Czech Republic.
Clin Neurophysiol. 2025 Jan;169:33-46. doi: 10.1016/j.clinph.2024.11.007. Epub 2024 Nov 19.
Precise localization of the epileptogenic zone is critical for successful epilepsy surgery. However, imbalanced datasets in terms of epileptic vs. normal electrode contacts and a lack of standardized evaluation guidelines hinder the consistent evaluation of automatic machine learning localization models.
This study addresses these challenges by analyzing class imbalance in clinical datasets and evaluating common assessment metrics. Data from 139 drug-resistant epilepsy patients across two Institutions were analyzed. Metric behaviors were examined using clinical and simulated data.
Complementary use of Area Under the Receiver Operating Characteristic (AUROC) and Area Under the Precision-Recall Curve (AUPRC) provides an optimal evaluation approach. This must be paired with an analysis of class imbalance and its impact due to significant variations found in clinical datasets.
The proposed framework offers a comprehensive and reliable method for evaluating machine learning models in epileptogenic zone localization, improving their precision and clinical relevance.
Adopting this framework will improve the comparability and multicenter testing of machine learning models in epileptogenic zone localization, enhancing their reliability and ultimately leading to better surgical outcomes for epilepsy patients.
致痫区的精确定位对于癫痫手术的成功至关重要。然而,癫痫电极触点与正常电极触点数据集的不平衡,以及缺乏标准化评估指南,阻碍了对自动机器学习定位模型的一致性评估。
本研究通过分析临床数据集中的类别不平衡并评估常见评估指标来应对这些挑战。分析了来自两个机构的139例耐药性癫痫患者的数据。使用临床和模拟数据检查指标行为。
互补使用受试者操作特征曲线下面积(AUROC)和精确召回率曲线下面积(AUPRC)提供了一种最佳评估方法。这必须与对类别不平衡及其在临床数据集中发现的显著变化所产生影响的分析相结合。
所提出的框架为评估致痫区定位中的机器学习模型提供了一种全面且可靠的方法,提高了其精度和临床相关性。
采用该框架将提高致痫区定位中机器学习模型的可比性和多中心测试,增强其可靠性,并最终为癫痫患者带来更好的手术结果。