Nejedly Petr, Hrtonova Valentina, Pail Martin, Cimbalnik Jan, Daniel Pavel, Travnicek Vojtech, Dolezalova Irena, Mivalt Filip, Kremen Vaclav, Jurak Pavel, Worrell Gregory A, Frauscher Birgit, Klimes Petr, Brazdil Milan
Brno Epilepsy Center, Department of Neurology, Member of ERN-EpiCARE, St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic.
Institute of Scientific Instruments, The Czech Academy of Sciences, Brno 612 00, Czech Republic.
Brain Commun. 2025 Apr 16;7(3):fcaf140. doi: 10.1093/braincomms/fcaf140. eCollection 2025.
Precise localization of the epileptogenic zone is pivotal for planning minimally invasive surgeries in drug-resistant epilepsy. Here, we present a graph neural network (GNN) framework that integrates interictal intracranial EEG features, electrode topology, and MRI features to automate epilepsy surgery planning. We retrospectively evaluated the model using leave-one-patient-out cross-validation on a dataset of 80 drug-resistant epilepsy patients treated at St. Anne's University Hospital (Brno, Czech Republic), comprising 31 patients with good postsurgical outcomes (Engel I) and 49 with poor outcomes (Engel II-IV). The GNN predictions demonstrated a significantly better ( < 0.05, Mann-Whitney-U test) area under the precision-recall curve in patients with good outcomes (area under the precision-recall curve: 0.69) compared with those with poor outcomes (area under the precision-recall curve: 0.33), indicating that the model captures clinically relevant targets in successful cases. In patients with poor outcomes, the graph neural network proposed alternative intervention sites that diverged from the original clinical plans, highlighting its potential to identify alternative therapeutic targets. We show that topology-aware GNNs significantly outperformed ( < 0.05, Wilcoxon signed-rank test) traditional neural networks while using the same intracranial EEG features, emphasizing the importance of incorporating implantation topology into predictive models. These findings uncover the potential of GNNs to automatically suggest targets for epilepsy surgery, which can assist the clinical team during the planning process.
癫痫发作起始区的精确定位对于耐药性癫痫的微创手术规划至关重要。在此,我们提出了一种图神经网络(GNN)框架,该框架整合了发作间期颅内脑电图特征、电极拓扑结构和磁共振成像特征,以实现癫痫手术规划的自动化。我们在圣安妮大学医院(捷克布尔诺)治疗的80例耐药性癫痫患者的数据集上,采用留一患者交叉验证法对该模型进行了回顾性评估,其中包括31例术后效果良好(恩格尔I级)的患者和49例效果不佳(恩格尔II - IV级)的患者。与效果不佳的患者(精确召回率曲线下面积:0.33)相比,GNN预测在效果良好的患者中显示出显著更好(<0.05,曼 - 惠特尼 - U检验)的精确召回率曲线下面积(精确召回率曲线下面积:0.69),这表明该模型在成功病例中捕捉到了临床相关靶点。在效果不佳的患者中,图神经网络提出了与原始临床计划不同的替代干预部位,突出了其识别替代治疗靶点的潜力。我们表明,在使用相同的颅内脑电图特征时,拓扑感知GNN明显优于(<0.05,威尔科克森符号秩检验)传统神经网络,强调了将植入拓扑结构纳入预测模型的重要性。这些发现揭示了GNN自动为癫痫手术建议靶点的潜力,这可以在规划过程中协助临床团队。