Ajith Meenu, Spence Jeffrey S, Chapman Sandra B, Calhoun Vince D
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science(TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, 55 Park Pl NE, Atlanta, 30303, GA, USA.
Center for BrainHealth, The University of Texas at Dallas, Dallas, 75235, TX, USA.
J Neurosci Methods. 2025 Feb;414:110322. doi: 10.1016/j.jneumeth.2024.110322. Epub 2024 Nov 26.
Predicting future brain health is a complex endeavor that often requires integrating diverse data sources. The neural patterns and interactions identified through neuroimaging serve as the fundamental basis and early indicators that precede the manifestation of observable behaviors or psychological states.
In this work, we introduce a multimodal predictive modeling approach that leverages an imaging-informed methodology to gain insights into future behavioral outcomes. We employed three methodologies for evaluation: an assessment-only approach using support vector regression (SVR), a neuroimaging-only approach using random forest (RF), and an image-assisted method integrating the static functional network connectivity (sFNC) matrix from resting-state functional magnetic resonance imaging (rs-fMRI) alongside assessments. The image-assisted approach utilized a partially conditional variational autoencoder (PCVAE) to predict brain health constructs in future visits from the behavioral data alone.
Our performance evaluation indicates that the image-assisted method excels in handling conditional information to predict brain health constructs in subsequent visits and their longitudinal changes. These results suggest that during the training stage, the PCVAE model effectively captures relevant information from neuroimaging data, thereby potentially improving accuracy in making future predictions using only assessment data.
The proposed image-assisted method outperforms traditional assessment-only and neuroimaging-only approaches by effectively integrating neuroimaging data with assessment factors.
This study underscores the potential of neuroimaging-informed predictive modeling to advance our comprehension of the complex relationships between cognitive performance and neural connectivity.
预测未来的脑健康是一项复杂的工作,通常需要整合多种数据源。通过神经影像学识别出的神经模式和相互作用是可观察到的行为或心理状态出现之前的基本依据和早期指标。
在这项工作中,我们引入了一种多模态预测建模方法,该方法利用基于成像的方法来深入了解未来的行为结果。我们采用了三种评估方法:使用支持向量回归(SVR)的仅评估方法、使用随机森林(RF)的仅神经影像学方法,以及一种将静息态功能磁共振成像(rs-fMRI)的静态功能网络连接性(sFNC)矩阵与评估相结合的图像辅助方法。图像辅助方法利用部分条件变分自编码器(PCVAE)仅根据行为数据预测未来访视中的脑健康指标。
我们的性能评估表明,图像辅助方法在处理条件信息以预测后续访视中的脑健康指标及其纵向变化方面表现出色。这些结果表明,在训练阶段,PCVAE模型有效地从神经影像学数据中捕捉到相关信息,从而有可能提高仅使用评估数据进行未来预测的准确性。
所提出的图像辅助方法通过有效地将神经影像学数据与评估因素相结合,优于传统的仅评估方法和仅神经影像学方法。
本研究强调了基于神经影像学的预测建模在推进我们对认知表现与神经连接之间复杂关系理解方面的潜力。