Suppr超能文献

植物和土壤生物对全球变化的解耦响应跨越了世界各地的陆地生态系统。

Decoupled responses of plants and soil biota to global change across the world's land ecosystems.

机构信息

Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China.

Swiss Federal Institute of Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, Switzerland.

出版信息

Nat Commun. 2024 Nov 29;15(1):10369. doi: 10.1038/s41467-024-54304-z.

Abstract

Understanding the concurrent responses of aboveground and belowground biota compartments to global changes is crucial for the maintenance of ecosystem functions and biodiversity conservation. We conduct a comprehensive analysis synthesizing data from 13,209 single observations and 3223 pairwise observations from 1166 publications across the world terrestrial ecosystems to examine the responses of plants and soil organisms and their synchronization. We find that global change factors (GCFs) generally promote plant biomass but decreased plant species diversity. In comparison, the responses of belowground soil biota to GCFs are more variable and harder to predict. The analysis of the paired aboveground and belowground observations demonstrate that responses of plants and soil organisms to GCFs are decoupled among diverse groups of soil organisms for different biomes. Our study highlights the importance of integrative research on the aboveground-belowground system for improving predictions regarding the consequences of global environmental change.

摘要

了解地上和地下生物区系对全球变化的同步响应,对于维持生态系统功能和生物多样性保护至关重要。我们通过综合分析来自全球陆地生态系统 1166 篇文献中的 13209 个单一观测值和 3223 个成对观测值的数据,研究了植物和土壤生物及其同步性对全球变化因素(GCFs)的响应。我们发现,全球变化因素通常会促进植物生物量的增加,但会降低植物物种的多样性。相比之下,地下土壤生物对 GCFs 的响应更加多样,也更难预测。对地上和地下成对观测值的分析表明,不同生物群落的土壤生物对 GCFs 的响应在植物和土壤生物之间存在解耦。我们的研究强调了综合研究地上-地下系统的重要性,以提高对全球环境变化后果的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a684/11605088/e24886bf2084/41467_2024_54304_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验