Suppr超能文献

岩爆烈度预测中数据平衡与组合判别模型的研究与应用

Investigation and application of data balancing and combined discriminant model in rock burst severity prediction.

作者信息

Yan Shaohong, Liu Runze, Zhang Yanbo, Yao Xulong, Yang Yueqi, Wang Qi, Guo Bin, Wang Shuai

机构信息

College of Mining Engineering, North China University of Science and Technology, Tangshan, 063210, Hebei, China.

Hebei Provincial Center for Green Intelligent Mining Technology Innovation, North China University of Science and Technology, Tangshan, 063210, Hebei, China.

出版信息

Sci Rep. 2024 Nov 29;14(1):29657. doi: 10.1038/s41598-024-81307-z.

Abstract

In the development of intelligent rock burst prediction models, issues such as incomplete data coverage and data imbalance are frequently encountered. These issues may lead to risks of overfitting in predictive models, poor generalization capabilities, and increased bias, which in turn may result in misjudgments and unpredictable losses. To accurately predict rock burst disasters and mitigate or eliminate related threats, this paper proposes a composite prediction model that integrates Density-Based Nonlinear Resampling (DBNR)-Tomek Link data balancing algorithms with Bayesian Optimization (BO)-Multilayer Perceptron (MLP)-Random Forest (RF). Initially, this study collected and organized a total of 301 recorded rock burst disaster field observation data, covering various tectonic plates, engineering types, rock origins, rock textures, and rock burst types. Subsequently, from a data analysis perspective, we employed the PCA-SSA-K-means unsupervised clustering algorithm to delve into the underlying information contained within the data, thereby validating the rationality of categorizing rock bursts into four grades. Then, using the L2 norm to optimize the dimensionality of the indicators and supplementing with indicator importance ranking and hypothesis testing, we selected the maximum tangential stress of the surrounding rock, the ratio of the maximum tangential stress of the surrounding rock to the uniaxial compressive strength of the rock (stress coefficient), and the elastic energy index as the criteria for rock burst intensity grading. Following that, the DBNR-Tomek Link sampling method was applied to balance the sample data, optimizing the data sample ratio and ultimately expanding the sample size to 396, improving the proportion of data samples from 2:3:4:1 to 1:1:2:1, thereby enhancing the model's generalization performance. Ultimately, a BO-MLP-RF composite prediction model was constructed based on Bayesian Optimization (BO), Multilayer Perceptron (MLP), and Random Forest (RF) algorithms, with the Bayesian Optimization method ensuring that the model fits the training data well and generalizes to the test data. The results of tenfold cross-validation demonstrated that the model's accuracy is consistently around 92.5%, combining the training results of rock burst models with imbalanced datasets, proving that the MLP model, adept at modeling nonlinear data, and the RF model, skilled in modeling large-scale data, serve as basic classifiers. This demonstrates that the application of data balancing and combined discriminative model schemes have enhanced the model's predictive performance and stability. The model is capable of providing high-accuracy, high-efficiency early warning monitoring services for rock burst phenomena in rock engineering, thereby ensuring engineering safety.

摘要

在智能岩爆预测模型的开发过程中,经常会遇到数据覆盖不完整和数据不平衡等问题。这些问题可能会导致预测模型出现过拟合风险、泛化能力差以及偏差增大,进而可能导致误判和不可预测的损失。为了准确预测岩爆灾害并减轻或消除相关威胁,本文提出了一种复合预测模型,该模型将基于密度的非线性重采样(DBNR)-托梅克链接数据平衡算法与贝叶斯优化(BO)-多层感知器(MLP)-随机森林(RF)相结合。最初,本研究收集并整理了总共301条记录的岩爆灾害现场观测数据,涵盖了不同的构造板块、工程类型、岩石成因、岩石纹理和岩爆类型。随后,从数据分析的角度出发,我们采用主成分分析-奇异谱分析-K均值无监督聚类算法来深入研究数据中包含的潜在信息,从而验证将岩爆分为四个等级的合理性。然后,使用L2范数优化指标维度,并辅以指标重要性排序和假设检验,我们选择围岩最大切向应力、围岩最大切向应力与岩石单轴抗压强度的比值(应力系数)以及弹性能量指数作为岩爆强度分级的标准。接下来,应用DBNR-托梅克链接采样方法平衡样本数据,优化数据样本比例,最终将样本量扩大到396,将数据样本比例从2:3:4:1提高到1:1:2:1,从而提高了模型的泛化性能。最终,基于贝叶斯优化(BO)、多层感知器(MLP)和随机森林(RF)算法构建了BO-MLP-RF复合预测模型,贝叶斯优化方法确保模型能够很好地拟合训练数据并推广到测试数据。十折交叉验证的结果表明,该模型的准确率始终在92.5%左右,结合了不平衡数据集的岩爆模型训练结果,证明了擅长对非线性数据建模的MLP模型和擅长对大规模数据建模的RF模型作为基本分类器。这表明数据平衡和组合判别模型方案的应用提高了模型的预测性能和稳定性。该模型能够为岩石工程中的岩爆现象提供高精度、高效率的预警监测服务,从而确保工程安全。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61b6/11604787/356c19703cf6/41598_2024_81307_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验