Suppr超能文献

一种基于新型人工智能的电力系统负荷频率控制多阶段控制器。

A novel artificial intelligence based multistage controller for load frequency control in power systems.

作者信息

Jabari Mostafa, Izci Davut, Ekinci Serdar, Bajaj Mohit, Blazek Vojtech, Prokop Lukas

机构信息

Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran.

Department of Computer Engineering, Batman University, Batman, Turkey.

出版信息

Sci Rep. 2024 Nov 28;14(1):29571. doi: 10.1038/s41598-024-81382-2.

Abstract

The imbalance between generated power and load demand often causes unwanted fluctuations in the frequency and tie-line power changes within a power system. To address this issue, a control process known as load frequency control (LFC) is essential. This study aims to optimize the parameters of the LFC controller for a two-area power system that includes a reheat thermal generator and a photovoltaic (PV) power plant. An innovative multi-stage TDn(1 + PI) controller is introduced to reduce the oscillations in frequency and tie-line power changes. This controller combines a tilt-derivative with an N filter (TDn) with a proportional-integral (PI) controller, which improves the system's response by correcting both steady-state errors and the rate of change. This design enhances the stability and speed of dynamic control systems. A new meta-heuristic optimization technique called bio-dynamic grasshopper optimization algorithm (BDGOA) is used for the first time to fine-tune the parameters of the proposed controller and improve its performance. The effectiveness of the controller is evaluated under various load demands, parameter variations, and nonlinearities. Comparisons with other controllers and optimization algorithms show that the BDGOA-TDn(1 + PI) controller significantly reduces overshoot in system frequency and tie-line power changes and achieves faster settling times for these oscillations. Simulation results demonstrate that the BDGOA-TDn(1 + PI) controller significantly outperforms conventional controllers, achieving a reduction in overshoot by 75%, faster settling times by 60%, and a lower integral of time-weighted absolute error by 50% under diverse operating conditions, including parameter variations and nonlinearities such as time delays and governor deadband effects.

摘要

发电功率与负荷需求之间的不平衡常常会导致电力系统内频率出现不必要的波动以及联络线功率变化。为解决这一问题,一种名为负荷频率控制(LFC)的控制过程至关重要。本研究旨在优化包含再热式热力发电机和光伏(PV)发电厂的两区域电力系统的LFC控制器参数。引入了一种创新的多级TDn(1 + PI)控制器,以减少频率和联络线功率变化中的振荡。该控制器将带有N滤波器的倾斜导数(TDn)与比例积分(PI)控制器相结合,通过校正稳态误差和变化率来改善系统响应。这种设计提高了动态控制系统的稳定性和速度。一种名为生物动态蚱蜢优化算法(BDGOA)的新型元启发式优化技术首次被用于微调所提出控制器的参数并改善其性能。在各种负荷需求、参数变化和非线性情况下对该控制器的有效性进行了评估。与其他控制器和优化算法的比较表明,BDGOA - TDn(1 + PI)控制器显著降低了系统频率和联络线功率变化中的超调量,并使这些振荡的调节时间更快。仿真结果表明,在包括参数变化以及诸如时间延迟和调速器死区效应等非线性在内的各种运行条件下,BDGOA - TDn(1 + PI)控制器明显优于传统控制器,超调量降低了75%,调节时间加快了60%,时间加权绝对误差积分降低了50%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ebc/11604663/1ad6882f480c/41598_2024_81382_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验