Suppr超能文献

使用鲁棒分数阶控制器对固定翼无人机进行控制。

Control of a fixed wing unmanned aerial vehicle using a robust fractional order controller.

作者信息

Metekia Enanwo Wondem, Asfaw Wubshet Ayalew, Abdissa Chala Merga, Lemma Lebsework Negash

机构信息

School of Electrical and Computer Engineering, Addis Ababa University, P.O.BOX: 385, Addis Ababa, 1000, Ethiopia.

出版信息

Sci Rep. 2025 Jun 6;15(1):19954. doi: 10.1038/s41598-025-03552-0.

Abstract

Fixed wing Unmanned Aerial Vehicles (FWUAVs) are widely utilized in both military and civilian sectors due to their ability to perform risky, inaccessible operations. The mathematical model of FWUAVs is complex, incorporating physical laws and coordinate systems with transformation matrices. In addition, controlling FWUAVs is challenging due to their nonlinear and coupled dynamics. This paper focuses on tracking trajectories for fixed wing unmanned aerial vehicles (FWUAVs) using a Robust Fractional Order Sliding Mode Controller (RFOSMC). An RFOSMC, which combines a conventional Sliding Mode Controller (SMC) with flexible fractional calculus, is proposed in this paper. Particle Swarm Optimization (PSO) is used to tune the control gains of RFOSMC. External disturbances and parameter variation are added to evaluate the controller's performance. Comparative studies have been done with Linear Quadratic Regulator (LQR), Fractional Order PID (FOPID), SMC, and robust FOSMC. RFOSMC performs better than LQR, FOPID, and SMC in tracking accuracy, response speed, and overshoot. In addition, the performance comparison of RFOSMC and conventional SMC has been done based on performance index values of errors (ITAE), and RFOSMC showed a 76.5918% improvement. For a step input, RFOSMC showed the smallest settling time of 0.835s compared with 2.724s for SMC and 4.8573s for FOPID. Open-loop model verification and overall control system of FWUAV are done using MATLAB/Simulink software.

摘要

固定翼无人机(FWUAVs)因其能够执行危险、难以到达的任务而在军事和民用领域得到广泛应用。FWUAVs的数学模型很复杂,包含物理定律以及带有变换矩阵的坐标系。此外,由于其非线性和耦合动力学特性,控制FWUAVs具有挑战性。本文重点研究使用鲁棒分数阶滑模控制器(RFOSMC)对固定翼无人机(FWUAVs)进行轨迹跟踪。本文提出了一种将传统滑模控制器(SMC)与灵活的分数阶微积分相结合的RFOSMC。粒子群优化(PSO)用于调整RFOSMC的控制增益。添加外部干扰和参数变化以评估控制器的性能。已与线性二次调节器(LQR)、分数阶PID(FOPID)、SMC和鲁棒FOSMC进行了对比研究。RFOSMC在跟踪精度(跟踪准确性)、响应速度和超调量方面比LQR、FOPID和SMC表现更好。此外,基于误差的性能指标值(ITAE)对RFOSMC和传统SMC进行了性能比较,RFOSMC显示出76.5918%的改进。对于阶跃输入,RFOSMC的最小调节时间为0.835s,相比之下,SMC为2.724s,FOPID为4.8573s。使用MATLAB/Simulink软件对FWUAV的开环模型进行了验证以及对整个控制系统进行了验证。 (注:原文中tracking accuracy直译为跟踪准确性,结合语境这里意译为跟踪精度更合适;overshoot直译为过冲,结合语境这里意译为超调量更合适;settling time直译为建立时间,结合语境这里意译为调节时间更合适。已在译文中进行了相应调整。)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da4b/12144248/2d23e65b5adf/41598_2025_3552_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验