Suppr超能文献

合成心电图信号生成:一项范围综述。

Synthetic ECG signals generation: A scoping review.

作者信息

Zanchi Beatrice, Monachino Giuliana, Fiorillo Luigi, Conte Giulio, Auricchio Angelo, Tzovara Athina, Faraci Francesca D

机构信息

Institute of Digital Technologies for Personalized Healthcare MeDiTech, Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Via la Santa 1, Lugano, 6900, Switzerland; Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.

Institute of Digital Technologies for Personalized Healthcare MeDiTech, Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Via la Santa 1, Lugano, 6900, Switzerland; Institute of Informatics, University of Bern, Neubruckstrasse 10, Bern, 3012, Switzerland.

出版信息

Comput Biol Med. 2025 Jan;184:109453. doi: 10.1016/j.compbiomed.2024.109453. Epub 2024 Nov 28.

Abstract

The scientific community has recently shown increasing interest in generating synthetic ECG data. In particular, synthetic ECG signals can be beneficial for understanding cardiac electrical activity, developing large and heterogeneous unbiased datasets, and anonymizing data to favour knowledge sharing and open science. In the present scoping review, various methodologies to generate synthetic ECG data have been thoroughly analysed, highlighting their limitations and possibilities. A total of 79 studies have been included and classified, depending on the methodology employed, the number of leads, the number of heartbeats, and the purpose of data synthesis. Three main categories have been identified: mathematical modelling, computer vision inherited methods, and deep generative models. This thorough analysis can assist in the choice of the most suitable technique for a specific application. The biggest challenge is identifying standardized metrics that can comprehensively and quantitatively assess the fidelity and variability of generated synthetic ECG data.

摘要

科学界最近对生成合成心电图数据表现出越来越浓厚的兴趣。特别是,合成心电图信号有助于理解心脏电活动、开发大规模且异质的无偏数据集,以及对数据进行匿名化处理以促进知识共享和开放科学。在本次范围综述中,对生成合成心电图数据的各种方法进行了全面分析,突出了它们的局限性和可能性。根据所采用的方法、导联数量、心跳数量以及数据合成的目的,共纳入并分类了79项研究。已确定三个主要类别:数学建模、计算机视觉继承方法和深度生成模型。这种全面分析有助于为特定应用选择最合适的技术。最大的挑战是确定能够全面、定量评估所生成合成心电图数据的保真度和可变性的标准化指标。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验