Suppr超能文献

基于分段控制和自适应模糊神经网络的压力腔故障诊断模型设计

Pressure chamber fault diagnosis model design based on segmented control and adaptive fuzzy neural network.

作者信息

Zhang Nan, Ma Yong

机构信息

School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China.

出版信息

Sci Rep. 2024 Nov 29;14(1):29674. doi: 10.1038/s41598-024-80572-2.

Abstract

With the advent of the information age, the evolution of aerospace technology has rendered high-altitude flights increasingly common and vital. Nonetheless, the fault diagnosis of the pressure chamber, a crucial aspect of ensuring flight safety, remains an urgent challenge. The integration of segmented control technology in this domain further augments system stability and safety. This paper introduces a fault diagnosis model using EWTLM-FNN framework for monitoring and analyzing the state of the pressure chamber. The EWTLM-FNN framework commences with denoising and filtering of barometric pressure monitoring data to eliminate noise interference, followed by the extraction of frequency-domain modal information using the empirical wavelet transform (EWT). Subsequently, a three-layer Long Short-Term Memory Network conducts a profound analysis of the time and frequency domain features. The extracted features are then input into a fuzzy neural network (FNN) for fault identification and diagnosis, thus achieving high-precision monitoring of pressure chamber faults. Experimental results demonstrate that the proposed EWTLM-FNN framework exhibits superior fault diagnosis performance across multiple barometric pressure monitoring datasets, achieving over 90% diagnostic accuracy on the self-constructed pressure chamber fault dataset, and surpassing all indices compared to traditional machine learning and single deep learning models, thereby providing a theoretical and methodological foundation for future aircraft pressure fault diagnosis.

摘要

随着信息时代的到来,航空航天技术的发展使高空飞行变得越来越普遍和重要。尽管如此,压力舱的故障诊断作为确保飞行安全的关键环节,仍然是一项紧迫的挑战。该领域中分段控制技术的集成进一步增强了系统的稳定性和安全性。本文介绍了一种使用EWTLM-FNN框架的故障诊断模型,用于监测和分析压力舱的状态。EWTLM-FNN框架首先对气压监测数据进行去噪和滤波,以消除噪声干扰,然后使用经验小波变换(EWT)提取频域模态信息。随后,一个三层长短期记忆网络对时域和频域特征进行深入分析。提取的特征随后被输入到模糊神经网络(FNN)中进行故障识别和诊断,从而实现对压力舱故障的高精度监测。实验结果表明,所提出的EWTLM-FNN框架在多个气压监测数据集上表现出卓越的故障诊断性能,在自行构建的压力舱故障数据集上诊断准确率超过90%,与传统机器学习和单一深度学习模型相比,各项指标均更优,从而为未来飞机压力故障诊断提供了理论和方法基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1067/11607442/e5b0f18e7608/41598_2024_80572_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验