Zhang Nan, Ma Yong
School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China.
Sci Rep. 2024 Nov 29;14(1):29674. doi: 10.1038/s41598-024-80572-2.
With the advent of the information age, the evolution of aerospace technology has rendered high-altitude flights increasingly common and vital. Nonetheless, the fault diagnosis of the pressure chamber, a crucial aspect of ensuring flight safety, remains an urgent challenge. The integration of segmented control technology in this domain further augments system stability and safety. This paper introduces a fault diagnosis model using EWTLM-FNN framework for monitoring and analyzing the state of the pressure chamber. The EWTLM-FNN framework commences with denoising and filtering of barometric pressure monitoring data to eliminate noise interference, followed by the extraction of frequency-domain modal information using the empirical wavelet transform (EWT). Subsequently, a three-layer Long Short-Term Memory Network conducts a profound analysis of the time and frequency domain features. The extracted features are then input into a fuzzy neural network (FNN) for fault identification and diagnosis, thus achieving high-precision monitoring of pressure chamber faults. Experimental results demonstrate that the proposed EWTLM-FNN framework exhibits superior fault diagnosis performance across multiple barometric pressure monitoring datasets, achieving over 90% diagnostic accuracy on the self-constructed pressure chamber fault dataset, and surpassing all indices compared to traditional machine learning and single deep learning models, thereby providing a theoretical and methodological foundation for future aircraft pressure fault diagnosis.
随着信息时代的到来,航空航天技术的发展使高空飞行变得越来越普遍和重要。尽管如此,压力舱的故障诊断作为确保飞行安全的关键环节,仍然是一项紧迫的挑战。该领域中分段控制技术的集成进一步增强了系统的稳定性和安全性。本文介绍了一种使用EWTLM-FNN框架的故障诊断模型,用于监测和分析压力舱的状态。EWTLM-FNN框架首先对气压监测数据进行去噪和滤波,以消除噪声干扰,然后使用经验小波变换(EWT)提取频域模态信息。随后,一个三层长短期记忆网络对时域和频域特征进行深入分析。提取的特征随后被输入到模糊神经网络(FNN)中进行故障识别和诊断,从而实现对压力舱故障的高精度监测。实验结果表明,所提出的EWTLM-FNN框架在多个气压监测数据集上表现出卓越的故障诊断性能,在自行构建的压力舱故障数据集上诊断准确率超过90%,与传统机器学习和单一深度学习模型相比,各项指标均更优,从而为未来飞机压力故障诊断提供了理论和方法基础。