Zhang Yuejin, Wei Fuxiang, Poh Yeh-Chuin, Jia Qiong, Chen Junjian, Chen Junwei, Luo Junyu, Yao Wenting, Zhou Wenwen, Huang Wei, Yang Fang, Zhang Yao, Wang Ning
Laboratory for Cellular Biomechanics and Regenerative Medicine, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
School of Information Engineering, East China Jiaotong University, Nanchang, China.
Nat Protoc. 2017 Jul;12(7):1437-1450. doi: 10.1038/nprot.2017.042. Epub 2017 Jun 22.
Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only a few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. 3D-magnetic twisting cytometry (3D-MTC) is a technique for applying local mechanical stresses to living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors, followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic-field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super-resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real-time acquisition of a living cell's mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC-microscopy platform takes ∼20 d to construct, and the experimental procedures require ∼4 d when carried out by a life sciences graduate student.
细胞和组织会因机械力而发生各种生物学和结构变化。目前仅有少数技术可用于在高分辨率下量化沿不同方向施加力时的结构变化。三维磁扭转细胞术(3D-MTC)是一种对活细胞施加局部机械应力的技术。在此,我们描述一种将3D-MTC与共聚焦荧光显微镜联用的方案。在3D-MTC中,铁磁珠通过表面受体与细胞表面结合,随后在任何所需方向对其进行磁化。然后施加不同方向的磁扭转场,以在任何所需方向产生旋转剪切应力。本方案描述了如何将磁场诱导的机械刺激与共聚焦荧光显微镜相结合,并提供了使用受激发射损耗(STED)纳米显微镜进行超分辨率成像的可选扩展。该技术能够通过特定受体快速实时获取活细胞对力的机械响应,并使用共聚焦荧光显微镜或STED对同一细胞中的结构和生化变化进行量化。集成的3D-MTC-显微镜平台构建大约需要20天,由生命科学专业研究生进行实验操作时,实验过程大约需要4天。
Microsc Res Tech. 2008-9
J Biophotonics. 2010-7
J Microsc. 2009-10
Trends Cell Biol. 1998-7
J Microsc. 2002-4
Cancer Metastasis Rev. 2024-12
Proc Natl Acad Sci U S A. 2023-3-28
Front Bioeng Biotechnol. 2022-12-16
Nat Mater. 2016-8-22
Nat Rev Mol Cell Biol. 2014-10-22
Nat Nanotechnol. 2011-11-13
Methods Enzymol. 2010
J R Soc Interface. 2010-3-31
Proc Natl Acad Sci U S A. 2010-3-29