Shang Fudong, Tang Shouguo, Wan Xiaorong, Li Yingna, Wang Lulu
Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Yunnan Key Laboratory of Computer Technologies Application, Kunming, China (F.S., S.T., X.W., Y.L., L.W.).
Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Yunnan Key Laboratory of Computer Technologies Application, Kunming, China (F.S., S.T., X.W., Y.L., L.W.).
Acad Radiol. 2025 Mar;32(3):1204-1217. doi: 10.1016/j.acra.2024.11.018. Epub 2024 Nov 30.
Metastatic bone tumors significantly reduce patients' quality of life and expedite cancer spread. Traditional diagnostic methods rely on time-consuming manual annotations by radiologists, which are prone to subjectivity. Employing deep learning for rapid, precise segmentation of bone metastases can greatly improve patient outcomes and survival. However, accurate segmentation remains challenging due to the diverse and complex nature of osteoblastic, osteolytic, or mixed lesions.
In this study, we presented a novel segmentation framework, termed BMSMM-Net, tailored specifically for the detection of bone metastases. The framework integrates our newly proposed Bottleneck Gating Mamba layer (BGM) into the network backbone, enhancing the long-range dependencies in the depth feature maps. Additionally, we designed a Skip-Mamba (SKM) module on the skip connections to facilitate long-range modeling during multi-scale feature fusion. Furthermore, a Multi-Perspective Extraction (MPE) module was employed in the feature extraction phase, utilizing three different sizes of convolutional kernels to enhance sensitivity to bone metastases.
Our framework was evaluated on the BM-Seg dataset through comparative and ablation studies. It achieved F1 scores of 91.07% and 95.17% for segmenting bone metastases and bone regions, respectively, along with mIoU scores of 83.60% and 90.78%, BMSMM-Net provides high-performance segmentation of bone metastases. Additionally, it maintains good computational efficiency compared to existing models.
The BMSMM-Net framework, integrating BGM, SKM, and MPE modules, effectively addresses the segmentation challenges of bone metastases. It significantly enhances accuracy, outperforms advanced existing methods, and maintains lower complexity, making it suitable for clinical application.
转移性骨肿瘤显著降低患者生活质量并加速癌症扩散。传统诊断方法依赖放射科医生耗时的手动标注,容易出现主观性。利用深度学习对骨转移灶进行快速、精确分割可极大改善患者预后和生存率。然而,由于成骨、溶骨或混合性病变的多样性和复杂性,准确分割仍然具有挑战性。
在本研究中,我们提出了一种专门用于检测骨转移灶的新型分割框架,称为BMSMM-Net。该框架将我们新提出的瓶颈门控曼巴层(BGM)集成到网络主干中,增强深度特征图中的长距离依赖性。此外,我们在跳跃连接上设计了一个跳跃曼巴(SKM)模块,以促进多尺度特征融合过程中的长距离建模。此外,在特征提取阶段采用了多视角提取(MPE)模块,利用三种不同大小的卷积核来增强对骨转移灶的敏感性。
我们的框架通过比较和消融研究在BM-Seg数据集上进行了评估。在分割骨转移灶和骨区域时,其F1分数分别达到91.07%和95.17%,mIoU分数分别为83.60%和90.78%,BMSMM-Net提供了高性能的骨转移灶分割。此外,与现有模型相比,它保持了良好的计算效率。
集成BGM、SKM和MPE模块的BMSMM-Net框架有效解决了骨转移灶的分割挑战。它显著提高了准确性,优于现有的先进方法,并保持较低的复杂度,使其适用于临床应用。