Suppr超能文献

采用新型多模态图方法对帕金森病进行个性化进展建模与预测。

Personalized progression modelling and prediction in Parkinson's disease with a novel multi-modal graph approach.

作者信息

Lian Jie, Luo Xufang, Shan Caihua, Han Dongqi, Zhang Chencheng, Vardhanabhuti Varut, Li Dongsheng, Qiu Lili

机构信息

Microsoft Research, Shanghai, China.

Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.

出版信息

NPJ Parkinsons Dis. 2024 Dec 1;10(1):229. doi: 10.1038/s41531-024-00832-w.

Abstract

Parkinson's disease (PD) is a complex neurological disorder characterized by dopaminergic neuron degeneration, leading to diverse motor and non-motor impairments. This variability complicates accurate progression modelling and early-stage prediction. Traditional classification methods based on clinical symptoms are often limited by disease heterogeneity. This study introduces an graph-based interpretable personalized progression method, utilizing data from the Parkinson's Progression Markers Initiative (PPMI) and Stroke Parkinson's Disease Biomarker Program (PDBP). Our approach integrates multimodal inter-individual and intra-individual data, including clinical assessments, MRI, and genetic information to make multi-dimension predictions. Validated using the PDBP dataset from 12 to 36 months, our AdaMedGraph method demonstrated strong performance, achieving AUC values of 0.748 and 0.714 for the 12-month Hoehn and Yahr Scale and Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III on the PPMI test set. Ablation analysis reveals the importance of baseline clinical assessment predictors. This novel framework improves personalized care and offers insights into unique disease trajectories in PD patients.

摘要

帕金森病(PD)是一种复杂的神经疾病,其特征为多巴胺能神经元变性,导致多种运动和非运动功能障碍。这种变异性使得准确的病情进展建模和早期预测变得复杂。基于临床症状的传统分类方法常常受到疾病异质性的限制。本研究引入了一种基于图的可解释个性化病情进展方法,利用帕金森病进展标志物倡议(PPMI)和中风帕金森病生物标志物项目(PDBP)的数据。我们的方法整合了个体间和个体内的多模态数据,包括临床评估、磁共振成像(MRI)和遗传信息,以进行多维度预测。使用PDBP数据集在12至36个月期间进行验证,我们的AdaMedGraph方法表现出色,在PPMI测试集上,12个月时的Hoehn和Yahr量表以及运动障碍协会赞助的统一帕金森病评定量表修订版(MDS-UPDRS)III的曲线下面积(AUC)值分别达到0.748和0.714。消融分析揭示了基线临床评估预测指标的重要性。这个新框架改善了个性化医疗,并为帕金森病患者独特的疾病轨迹提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ba5/11609293/609b9a165001/41531_2024_832_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验