Suppr超能文献

大型语言模型在牙科领域的创新与应用——一项范围综述

Innovation and application of Large Language Models (LLMs) in dentistry - a scoping review.

作者信息

Umer Fahad, Batool Itrat, Naved Nighat

机构信息

Associate Professor, Operative Dentistry & Endodontics, Aga Khan University Hospital, Karachi, Pakistan.

Resident, Operative Dentistry & Endodontics, Aga Khan University Hospital, Karachi, Pakistan.

出版信息

BDJ Open. 2024 Dec 1;10(1):90. doi: 10.1038/s41405-024-00277-6.

Abstract

OBJECTIVE

Large Language Models (LLMs) have revolutionized healthcare, yet their integration in dentistry remains underexplored. Therefore, this scoping review aims to systematically evaluate current literature on LLMs in dentistry.

DATA SOURCES

The search covered PubMed, Scopus, IEEE Xplore, and Google Scholar, with studies selected based on predefined criteria. Data were extracted to identify applications, evaluation metrics, prompting strategies, and deployment levels of LLMs in dental practice.

RESULTS

From 4079 records, 17 studies met the inclusion criteria. ChatGPT was the predominant model, mainly used for post-operative patient queries. Likert scale was the most reported evaluation metric, and only two studies employed advanced prompting strategies. Most studies were at level 3 of deployment, indicating practical application but requiring refinement.

CONCLUSION

LLMs showed extensive applicability in dental specialties; however, reliance on ChatGPT necessitates diversified assessments across multiple LLMs. Standardizing reporting practices and employing advanced prompting techniques are crucial for transparency and reproducibility, necessitating continuous efforts to optimize LLM utility and address existing challenges.

摘要

目的

大语言模型(LLMs)已经彻底改变了医疗保健行业,但它们在牙科领域的整合仍未得到充分探索。因此,本范围综述旨在系统评估当前关于牙科领域大语言模型的文献。

数据来源

检索范围涵盖了PubMed、Scopus、IEEE Xplore和谷歌学术,根据预定义标准选择研究。提取数据以确定大语言模型在牙科实践中的应用、评估指标、提示策略和部署水平。

结果

从4079条记录中,有17项研究符合纳入标准。ChatGPT是主要使用的模型,主要用于术后患者咨询。李克特量表是最常报告的评估指标,只有两项研究采用了先进的提示策略。大多数研究处于部署的第3级,表明有实际应用但需要改进。

结论

大语言模型在牙科专业中显示出广泛的适用性;然而,对ChatGPT的依赖需要对多个大语言模型进行多样化评估。标准化报告实践和采用先进的提示技术对于透明度和可重复性至关重要,需要持续努力以优化大语言模型的效用并应对现有挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75f6/11609263/2a16efa9c362/41405_2024_277_Fig1_HTML.jpg

相似文献

本文引用的文献

2
The application of large language models in medicine: A scoping review.大语言模型在医学中的应用:一项范围综述。
iScience. 2024 Apr 23;27(5):109713. doi: 10.1016/j.isci.2024.109713. eCollection 2024 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验