Chen Chun-Hao, Liu Gui-Wang, Chen Xin, Deger Caner, Jin Run-Jun, Wang Kai-Li, Chen Jing, Xia Yu, Huang Lei, Yavuz Ilhan, Fan Jian, Wang Zhao-Kui
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
Department of Physics, Marmara University, Ziverbey, Kadikoy, Istanbul, 34722, Turkey.
Angew Chem Int Ed Engl. 2025 Feb 10;64(7):e202419375. doi: 10.1002/anie.202419375. Epub 2024 Dec 9.
Inverted (p-i-n) perovskite solar cells (PSCs) have experienced remarkable advancements in recent years, which is largely attributed to the development of novel hole-transport layer (HTL) self-assembled monolayer (SAM) materials. Methoxy (MeO-) groups are typically introduced into SAM materials to enhance their wettability and effectively passivate the perovskite buried interface. However, MeO-based SAM materials exhibit a mismatch in highest occupied molecular orbital (HOMO) levels with perovskite layer due to the strong electron-donating capability of methoxy group. In this work, we introduced a methylthio (MeS-) substituent that is superior to methoxy as a highly versatile self-assembled molecular design strategy. As a soft base, sulfur atom forms a stronger Pb-S bond than oxygen. Additionally, within the CbzPh series of SAM materials, MeS-CbzPh demonstrates a more optimal HOMO level and enhanced hole transport properties. Consequently, the MeS-CbzPh HTL based device achieved an impressive power conversion efficiency (PCE) of 26.01 % and demonstrated high stability, retaining 93.3 % efficiency after 1000 hours of maximum power point tracking (MPPT). Moreover, in comparison with the commonly used 4PACz-based SAM molecular series, MeS-4PACz also exhibited the best performance among its peers. Our work provides valuable insights for the molecular design of SAM materials, offering a highly versatile functional substituent group.
近年来,倒置(p-i-n)钙钛矿太阳能电池(PSC)取得了显著进展,这在很大程度上归因于新型空穴传输层(HTL)自组装单分子层(SAM)材料的发展。通常将甲氧基(MeO-)引入SAM材料中以提高其润湿性并有效钝化钙钛矿掩埋界面。然而,由于甲氧基的强给电子能力,基于MeO的SAM材料与钙钛矿层在最高占据分子轨道(HOMO)能级上存在不匹配。在这项工作中,我们引入了一种甲硫基(MeS-)取代基,作为一种高度通用的自组装分子设计策略,它优于甲氧基。作为一种软碱,硫原子比氧形成更强的Pb-S键。此外,在CbzPh系列SAM材料中,MeS-CbzPh表现出更优化的HOMO能级和增强的空穴传输性能。因此,基于MeS-CbzPh HTL的器件实现了令人印象深刻的26.01%的功率转换效率(PCE),并表现出高稳定性,在最大功率点跟踪(MPPT)1000小时后仍保持93.3%的效率。此外,与常用的基于4PACz的SAM分子系列相比,MeS-4PACz在同类产品中也表现出最佳性能。我们的工作为SAM材料的分子设计提供了有价值的见解,提供了一个高度通用的功能取代基。