Parker Megan A, Khaddad Safa, Fares Nicolas, Ghoridi Anissa, Portehault David, Bonhommeau Sébastien, Amarouchene Yacine, Rosa Patrick, Gonidec Mathieu, Drisko Glenna L
University of Bordeaux, CNRS, Bordeaux-INP, ICMCB, UMR 5026, F-33600 Pessac, France.
University of Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France.
Chem Mater. 2024 Aug 28;36(22):10986-10993. doi: 10.1021/acs.chemmater.4c01439. eCollection 2024 Nov 26.
Silicon particles of intermediate sizes (75-200 nm) scatter visible wavelengths, making them promising candidates for optical devices. The solution synthesis of silicon particles in this size range, however, has proved challenging for chemists over the past few decades. Here, a solution-phase synthesis provides a pathway toward reaching size tunability between 45 and 230 nm via changing the reactant ratio in the reaction between a silicon Zintl phase (NaSi) with an amidinate-stabilized Si(IV) coordination complex. Coherent domain sizes, determined from powder X-ray diffraction, show that the crystallite sizes are uniform across all particle sizes, perhaps indicating an aggregation mechanism for particle growth. The amidinate ligands act to stabilize the particle surface. Combined surface techniques (ToF-SIMS, FTIR, and X-ray photoelectron spectroscopy) confirm the presence of amidinate ligands, as well as primary amine and a passive oxidation layer on the surface of the particles. The refractive index is measured for an individual particle using holographic optical microscopy, displaying a refractive index of nearly 4.1 at a wavelength of 532 nm. Thus, these particles should scatter light intensely at visible wavelengths, making them promising candidates for optical manipulation.
中等尺寸(75 - 200纳米)的硅颗粒能够散射可见光波长,这使得它们成为光学器件的有潜力的候选材料。然而,在过去几十年里,化学家们发现,在这个尺寸范围内进行硅颗粒的溶液合成具有挑战性。在此,一种溶液相合成方法提供了一条途径,通过改变硅齐格勒相(NaSi)与脒基稳定的Si(IV)配位络合物之间反应的反应物比例,可实现45至230纳米之间的尺寸可调性。由粉末X射线衍射确定的相干畴尺寸表明,所有颗粒尺寸的微晶尺寸都是均匀的,这可能表明颗粒生长存在聚集机制。脒基配体起到稳定颗粒表面的作用。综合表面技术(飞行时间二次离子质谱、傅里叶变换红外光谱和X射线光电子能谱)证实了颗粒表面存在脒基配体以及伯胺和钝化氧化层。使用全息光学显微镜测量单个颗粒的折射率,在波长532纳米处显示出近4.1的折射率。因此,这些颗粒在可见光波长下应能强烈散射光,使其成为光学操纵的有潜力的候选材料。