Aslan-Sungur Rojda Guler, Boersma Nic, Moore Caitlin E, Heaton Emily, Bernacchi Carl J, Vanloocke Andy
Department of Agronomy Iowa State University Ames Iowa USA.
DOE Center for Advanced Bioenergy and Bioproducts Innovation Iowa State University Ames Iowa USA.
Glob Change Biol Bioenergy. 2025 Jan;17(1):e70012. doi: 10.1111/gcbb.70012. Epub 2024 Nov 28.
Agricultural lands hold significant potential for CO sequestration, particularly when utilizing biomass crops and agricultural residues. Among these, Miscanthus × giganteus () stands out due to its high productivity and carbon sequestration capabilities. Recognizing the importance of such biomass crops, the Intergovernmental Panel on Climate Change (IPCC) has identified Bioenergy with Carbon Capture and Storage (BECCS) as a crucial strategy for achieving net-zero CO emissions by 2050. This study examines the carbon uptake potential of during its establishment year at the Sustainable Advanced Bioeconomy Research (SABR) farm in Iowa, USA, where was planted at a density exceeding previous studies. Using eddy covariance (EC) measurements, we quantified the net ecosystem carbon exchange (NEE), and derived gross primary productivity (GPP), and ecosystem respiration ( ). Our findings reveal that SABR's exhibited a significant carbon uptake of -621 g C m, a threefold increase compared to a similar EC site in the "corn-belt" (University of Illinois Energy Research Farm; UIEF), which was established with lower planting density and pre-commercial planting equipment. Favorable growing conditions and advanced planting technologies at SABR likely contributed to this high carbon uptake. Comparisons with other global EC studies indicated a strong correlation between higher planting densities and greater carbon uptake. These results suggest that increasing planting density can enhance carbon uptake, but further studies are necessary to evaluate the impacts under varying environmental conditions and management practices. Additionally, economic analyses are essential to determine the viability of higher planting densities. Our study underscores the potential of optimized management practices to contribute significantly to CO uptake and supports the development of BECCS as a viable climate change mitigation strategy.
农业用地在碳封存方面具有巨大潜力,特别是在利用生物质作物和农业残余物时。其中,巨芒草因其高生产力和碳封存能力而脱颖而出。认识到此类生物质作物的重要性,政府间气候变化专门委员会(IPCC)已将碳捕获与封存生物能源(BECCS)确定为到2050年实现二氧化碳净零排放的关键战略。本研究考察了在美国爱荷华州可持续先进生物经济研究(SABR)农场种植巨芒草的第一年其碳吸收潜力,该农场种植巨芒草的密度超过以往研究。通过涡度协方差(EC)测量,我们量化了净生态系统碳交换(NEE),并得出总初级生产力(GPP)和生态系统呼吸( )。我们的研究结果表明,SABR农场的巨芒草表现出显著的碳吸收量,为-621克碳/平方米,与“玉米带”(伊利诺伊大学能源研究农场;UIEF)的一个类似EC站点相比增加了两倍,后者种植密度较低且使用的是商业化前的种植设备。SABR农场有利的生长条件和先进的种植技术可能促成了这种高碳吸收。与其他全球EC研究的比较表明,较高的种植密度与更大的碳吸收之间存在很强的相关性。这些结果表明,增加巨芒草种植密度可以提高碳吸收,但需要进一步研究以评估不同环境条件和管理措施下的影响。此外,经济分析对于确定更高种植密度的可行性至关重要。我们的研究强调了优化巨芒草管理措施对二氧化碳吸收做出重大贡献的潜力,并支持将BECCS发展成为一种可行的气候变化缓解战略。