Suppr超能文献

脑脊液漏合并血液生物标志物可预测腰椎后路融合术后伤口愈合不良:一项机器学习分析

Cerebrospinal Fluid Leakage Combined with Blood Biomarkers Predicts Poor Wound Healing After Posterior Lumbar Spinal Fusion: A Machine Learning Analysis.

作者信息

Pang Zixiang, Ou Yangqin, Liang Jiawei, Huang Shengbin, Chen Jiayi, Huang Shengsheng, Wei Qian, Liu Yuzhen, Qin Hongyuan, Chen Yuanming

机构信息

Department Orthopedics Ward 3 (Spine and Osteopathy Surgery), Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China.

出版信息

Int J Gen Med. 2024 Nov 25;17:5479-5491. doi: 10.2147/IJGM.S487967. eCollection 2024.

Abstract

OBJECTIVE

The objective of this study aimed to investigate the risk factors for poor wound healing (PWH) after posterior lumbar spinal fusion. Currently, there is limited research on the application of machine learning in analyzing PWH after spinal surgery. Thus, our primary aim is to using machine learning identify these risk factors and construct a clinical risk prediction model.

METHODS

We retrospectively reviewed 2516 patients who underwent posterior lumbar spinal fusion at Guangxi Medical University's Second Affiliated Hospital between August 2021 and August 2023. The data was divided into test and validation groups in a 7:3 ratio. In the test group, logistic regression analysis, support vector machine (SVM), random forest (RF), decision tree (DT), XGboost, Naïve Bayes (NB), k-Nearest Neighbor (KNN), and Multi-Layer Perceptron (MLP) were used to identify specific variables. The top six models from the eight machine learning models with the highest area under curve (AUC) values were selected and used to construct a dynamic nomograms model. Model performance was evaluated using receiver operating characteristic (ROC) and calibration curves. The model's internal performance was then verified in the validation group using ROC and calibration curves.

RESULTS

Data from 2516 patients were collected, with 411 eligible cases selected. By combining logistic regression analysis with six machine learning algorithms, this study identified six predictors associated with PWH: subcutaneous lumbar spine index(SLSI), albumin, postoperative glucose, cerebrospinal fluid leakage(CSFL), neutrophil (NEU), and C-reactive protein(CRP). These predictors were used to develop a prediction model, visually represented through a nomogram. The AUC value in the test group was 0.981, and the C-index of the model was 0.986 (95% CI 0.966-0.995), indicating excellent predictive capability. Calibration curve analysis showed good consistency between nomogram-predicted values and actual measurements.

CONCLUSION

SLSI, albumin, postoperative glucose, CSFL, NEU and CRP were identified as significant risk factors for PWH after posterior lumbar spinal fusion. The developed prediction model exhibited excellent predictive accuracy and usefulness.

摘要

目的

本研究旨在探讨腰椎后路脊柱融合术后伤口愈合不良(PWH)的危险因素。目前,关于机器学习在分析脊柱手术后PWH方面的应用研究有限。因此,我们的主要目的是利用机器学习识别这些危险因素并构建临床风险预测模型。

方法

我们回顾性分析了2021年8月至2023年8月在广西医科大学第二附属医院接受腰椎后路脊柱融合术的2516例患者。数据按7:3的比例分为测试组和验证组。在测试组中,采用逻辑回归分析、支持向量机(SVM)、随机森林(RF)、决策树(DT)、XGBoost、朴素贝叶斯(NB)、k近邻(KNN)和多层感知器(MLP)来识别特定变量。从八个曲线下面积(AUC)值最高的机器学习模型中选出前六个模型,用于构建动态列线图模型。使用受试者工作特征(ROC)曲线和校准曲线评估模型性能。然后在验证组中使用ROC曲线和校准曲线验证模型的内部性能。

结果

收集了2516例患者的数据,其中411例符合条件。通过将逻辑回归分析与六种机器学习算法相结合,本研究确定了与PWH相关的六个预测因素:腰椎皮下指数(SLSI)、白蛋白、术后血糖、脑脊液漏(CSFL)、中性粒细胞(NEU)和C反应蛋白(CRP)。这些预测因素被用于开发一个预测模型,并通过列线图直观呈现。测试组的AUC值为0.981,模型的C指数为0.986(95%CI 0.966-0.995),表明具有出色的预测能力。校准曲线分析显示列线图预测值与实际测量值之间具有良好的一致性。

结论

SLSI、白蛋白、术后血糖、CSFL、NEU和CRP被确定为腰椎后路脊柱融合术后PWH的重要危险因素。所开发的预测模型具有出色的预测准确性和实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99b9/11606187/e4b3e6703d09/IJGM-17-5479-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验