Suppr超能文献

利用原位甲烷通量数据和机器学习方法量化全球湿地甲烷排放

Quantifying Global Wetland Methane Emissions With In Situ Methane Flux Data and Machine Learning Approaches.

作者信息

Chen Shuo, Liu Licheng, Ma Yuchi, Zhuang Qianlai, Shurpali Narasinha J

机构信息

Department of Earth, Atmospheric, Planetary Sciences Purdue University West Lafayette IN USA.

Department of Earth System Science and Center on Food Security and the Environment Stanford University Stanford CA USA.

出版信息

Earths Future. 2024 Nov;12(11):e2023EF004330. doi: 10.1029/2023EF004330. Epub 2024 Oct 31.

Abstract

Wetland methane (CH) emissions have a significant impact on the global climate system. However, the current estimation of wetland CH emissions at the global scale still has large uncertainties. Here we developed six distinct bottom-up machine learning (ML) models using in situ CH fluxes from both chamber measurements and the Fluxnet-CH network. To reduce uncertainties, we adopted a multi-model ensemble (MME) approach to estimate CH emissions. Precipitation, air temperature, soil properties, wetland types, and climate types are considered in developing the models. The MME is then extrapolated to the global scale to estimate CH emissions from 1979 to 2099. We found that the annual wetland CH emissions are 146.6 ± 12.2 Tg CH yr (1 Tg = 10 g) from 1979 to 2022. Future emissions will reach 165.8 ± 11.6, 185.6 ± 15.0, and 193.6 ± 17.2 Tg CH yr in the last two decades of the 21st century under SSP126, SSP370, and SSP585 scenarios, respectively. Northern Europe and near-equatorial areas are the current emission hotspots. To further constrain the quantification uncertainty, research priorities should be directed to comprehensive CH measurements and better characterization of spatial dynamics of wetland areas. Our data-driven ML-based global wetland CH emission products for both the contemporary and the 21st century shall facilitate future global CH cycle studies.

摘要

湿地甲烷(CH)排放对全球气候系统有重大影响。然而,目前全球尺度上湿地CH排放的估算仍存在很大的不确定性。在此,我们利用来自箱式测量和通量网-CH网络的原位CH通量,开发了六种不同的自下而上机器学习(ML)模型。为了减少不确定性,我们采用多模型集合(MME)方法来估算CH排放。在开发模型时考虑了降水、气温、土壤性质、湿地类型和气候类型。然后将MME外推到全球尺度,以估算1979年至2099年的CH排放。我们发现,1979年至2022年期间,湿地CH年排放量为146.6±12.2 Tg CH yr(1 Tg = 10 g)。在SSP126、SSP370和SSP585情景下,21世纪最后二十年的未来排放量将分别达到165.8±11.6、185.6±15.0和193.6±17.2 Tg CH yr。北欧和近赤道地区是当前的排放热点。为了进一步限制量化不确定性,研究重点应转向全面的CH测量和更好地表征湿地面积的空间动态。我们基于数据驱动的ML的当代和21世纪全球湿地CH排放产品将促进未来全球CH循环研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dc/11607141/1fc6087187a4/EFT2-12-0-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验