文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

挑战与机遇:医疗器械表面应用中传染病与抗菌药物耐药性之间的相互作用

Challenges and Opportunities: Interplay between Infectious Disease and Antimicrobial Resistance in Medical Device Surface Applications.

作者信息

Ortiz-Gómez Valerie, Maldonado-Hernández Rafael

机构信息

Department of Natural Sciences and Technology, Ana G. Méndez University, Gurabo Campus, Gurabo, Puerto Rico 00777, United States.

Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico 00926, United States.

出版信息

ACS Omega. 2025 May 20;10(21):20968-20983. doi: 10.1021/acsomega.5c01011. eCollection 2025 Jun 3.


DOI:10.1021/acsomega.5c01011
PMID:40488087
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12138651/
Abstract

Antimicrobial resistance (AMR) is a growing silent pandemic driven by multidrug-resistant infections, particularly those associated with medical devices such as dental implants, heart valves, and urinary catheters. This review addresses the urgent need for alternative antimicrobial strategies by exploring the integration of artificial intelligence (AI) in the discovery of antimicrobial peptides (AMPs) and the rational design of bioactive surfaces. We describe how AI-based models accelerate the identification and optimization of peptide candidates with potent antibiofilm activity. Moreover, we examine recent advancements in surface engineering, such as biomimetic coatings, quorum sensing inhibitors, and enzyme-based strategies, that disrupt bacterial colonization and biofilm formation. The novelty of this work lies in its unified perspective that bridges computational prediction, materials science, and microbial pathogenesis to inform the next generation of antimicrobial surfaces. By highlighting innovative AI-assisted approaches and emerging hybrid strategies, this review underscores their potential to mitigate device-associated infections and address the broader challenge of AMR in healthcare settings.

摘要

抗菌耐药性(AMR)是一场由多重耐药感染驱动的日益严重的无声大流行,尤其是那些与牙科植入物、心脏瓣膜和导尿管等医疗设备相关的感染。本综述通过探索人工智能(AI)在抗菌肽(AMPs)发现中的整合以及生物活性表面的合理设计,探讨了对抗菌替代策略的迫切需求。我们描述了基于AI的模型如何加速具有强大抗生物膜活性的肽候选物的鉴定和优化。此外,我们研究了表面工程的最新进展,如仿生涂层、群体感应抑制剂和基于酶的策略,这些策略可破坏细菌定植和生物膜形成。这项工作的新颖之处在于其统一的视角,将计算预测、材料科学和微生物发病机制联系起来,为下一代抗菌表面提供信息。通过强调创新的AI辅助方法和新兴的混合策略,本综述强调了它们在减轻与设备相关的感染以及应对医疗环境中AMR这一更广泛挑战方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/12138651/d81b3de121dc/ao5c01011_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/12138651/2d39772e7e29/ao5c01011_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/12138651/b17383dd5cb5/ao5c01011_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/12138651/8d676e0d6c9b/ao5c01011_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/12138651/67b1f105f963/ao5c01011_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/12138651/cf91dcb19d0c/ao5c01011_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/12138651/9c2bcebb78e3/ao5c01011_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/12138651/d81b3de121dc/ao5c01011_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/12138651/2d39772e7e29/ao5c01011_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/12138651/b17383dd5cb5/ao5c01011_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/12138651/8d676e0d6c9b/ao5c01011_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/12138651/67b1f105f963/ao5c01011_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/12138651/cf91dcb19d0c/ao5c01011_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/12138651/9c2bcebb78e3/ao5c01011_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/12138651/d81b3de121dc/ao5c01011_0007.jpg

相似文献

[1]
Challenges and Opportunities: Interplay between Infectious Disease and Antimicrobial Resistance in Medical Device Surface Applications.

ACS Omega. 2025-5-20

[2]
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.

Acc Chem Res. 2025-6-17

[3]
Selected honey as a multifaceted antimicrobial agent: review of compounds, mechanisms, and research challenges.

Future Microbiol. 2025

[4]
Gaps in Artificial Intelligence Research for Rural Health in the United States: A Scoping Review.

medRxiv. 2025-6-27

[5]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[6]
Targeting Ocular Biofilms with Plant-Derived Antimicrobials in the Era of Antibiotic Resistance.

Molecules. 2025-7-5

[7]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[8]
Deciphering the dynamics of methicillin-resistant Staphylococcus aureus biofilm formation: from molecular signaling to nanotherapeutic advances.

Cell Commun Signal. 2024-3-22

[9]
AML diagnostics in the 21st century: Use of AI.

Semin Hematol. 2025-6-16

[10]
Antimicrobials as cornerstones and quick fixes Zimbabwean in healthcare and society: Health practitioners´ critical reflections on two stories of antimicrobial use as part of antimicrobial resistance (AMR) education.

PLOS Glob Public Health. 2025-7-7

本文引用的文献

[1]
Intestinal Microbiota Dysbiosis Role and Bacterial Translocation as a Factor for Septic Risk.

Int J Mol Sci. 2025-2-26

[2]
Biofilm Resilience: Molecular Mechanisms Driving Antibiotic Resistance in Clinical Contexts.

Biology (Basel). 2025-2-6

[3]
Anti-Infective Bacteriophage Immobilized Nitric Oxide-Releasing Surface for Prevention of Thrombosis and Device-Associated Infections.

ACS Appl Bio Mater. 2025-2-17

[4]
Harnessing Non-Antibiotic Strategies to Counter Multidrug-Resistant Clinical Pathogens with Special Reference to Antimicrobial Peptides and Their Coatings.

Antibiotics (Basel). 2025-1-9

[5]
Machine learning for antimicrobial peptide identification and design.

Nat Rev Bioeng. 2024-5

[6]
AI Methods for Antimicrobial Peptides: Progress and Challenges.

Microb Biotechnol. 2025-1

[7]
Graveyard effects of antimicrobial nanostructured titanium over prolonged exposure to drug resistant bacteria and fungi.

Nanoscale. 2025-2-6

[8]
CRISPR-Cas Systems in the Fight Against Antimicrobial Resistance: Current Status, Potentials, and Future Directions.

Infect Drug Resist. 2024-11-26

[9]
CRISPR-Cas9-Mediated Targeting of Multidrug Resistance Genes in Methicillin-Resistant .

CRISPR J. 2024-12

[10]
Dual-action defense: A photothermal and controlled nitric oxide-releasing coating for preventing biofilm formation.

J Colloid Interface Sci. 2025-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索