Thompson Cristiane C, Wasielesky Wilson, Landuci Felipe, Lima Michele S, Bacha Leonardo, Perazzolo Luciane M, Lourenço-Marques Cátia, Soares Florbela, Pousão-Ferreira Pedro, Hanson Larry, Gomez-Gil Bruno, Thompson Mateus, Varasteh Tooba, Silva Tatiana A, Swings Jean, Zhang Xiao-Hua, de Souza Wanderley, Thompson Fabiano L
Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-599 Brazil.
Marine Aquaculture Station, Federal University of Rio Grande (FURG), Rio de Janeiro, 21941-599 Brazil.
Mar Life Sci Technol. 2024 Sep 19;6(4):579-609. doi: 10.1007/s42995-024-00248-8. eCollection 2024 Nov.
Aquaculture is critical to reduce protein deficiencies and supplement the world's demand for seafood. However, the culture environment predisposes farmed animals to infectious diseases. In particular, the high density of fish, crustacean, mollusk, sea cucumber or algal species allows for the rapid spread of infectious diseases resulting in devastating losses. Massive amounts of antibiotics have been used to sustain aquaculture production. This has led to the critical need to evaluate the impact of current control measures and optimize disease management schemes with an emphasis on global impact and sustainability. Furthermore, local and global changes have enhanced the pathogens' effects over aquaculture settings because increased temperature and pollution may trigger virulence genes and toxin production. Technological developments including biofloc technology, integrated multitrophic systems, recirculating aquaculture systems and probiotics have contributed to enhancing aquaculture sustainability and reducing the need for high loads of antibiotics and other chemicals. Furthermore, biotechnological tools (e.g., omics and cell biology) have shed light on cellular processes in the health and disease of reared organisms. Metagenomics is a reliable and relatively quick tool to identify microbial communities in aquaculture settings.
水产养殖对于减少蛋白质缺乏和满足全球对海鲜的需求至关重要。然而,养殖环境使养殖动物易患传染病。特别是,鱼类、甲壳类、软体动物、海参或藻类物种的高密度养殖使得传染病迅速传播,造成毁灭性损失。大量抗生素被用于维持水产养殖生产。这就迫切需要评估当前控制措施的影响,并优化疾病管理方案,重点关注全球影响和可持续性。此外,局部和全球变化增强了病原体对水产养殖环境的影响,因为温度升高和污染可能会触发毒力基因和毒素产生。包括生物絮团技术、综合多营养系统、循环水养殖系统和益生菌在内的技术发展有助于提高水产养殖的可持续性,并减少对高剂量抗生素和其他化学品的需求。此外,生物技术工具(如组学和细胞生物学)揭示了养殖生物健康和疾病中的细胞过程。宏基因组学是一种可靠且相对快速的工具,可用于识别水产养殖环境中的微生物群落。