Crotty Kathryn M, Yeligar Samantha M
Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University; Atlanta Veterans Affairs Health Care System.
Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University; Atlanta Veterans Affairs Health Care System;
J Vis Exp. 2024 Nov 15(213). doi: 10.3791/67579.
Alveolar macrophages (AMs) are the first line of cellular defense in the lower airway against pathogens. However, chronic and excessive alcohol use impairs the ability of AMs to phagocytize and clear pathogens from the alveolar space, in part through dysregulated fuel metabolism and bioenergetics. Our prior work has shown that chronic ethanol (EtOH) consumption impairs mitochondrial bioenergetics and increases lactate levels in AMs. Further, we recently demonstrated that EtOH increases glutamine dependency and glutamine-dependent maximal respiration while decreasing flexibility, shifting away from pyruvate-dependent respiration and towards glutamine-dependent respiration. Glutaminolysis is an important compensatory pathway for mitochondrial respiration when pyruvate is used for lactic acid production or when other fuel sources are insufficient. Using a mouse AM cell line, MH-S cells, exposed to either no EtOH or EtOH (0.08%) for 72 h, we determined the dependency of mitochondrial respiration and bioenergetics on glutamine as a fuel source using an extracellular flux bioanalyzer. Real-time measures were done in response to bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide (BPTES), an inhibitor of glutaminase 1, which prevents the enzymatic conversion of glutamine to glutamate, in media vehicle or in response to vehicle alone, followed by testing mitochondrial stress. The step-by-step protocol provided herein describes our methods and calculations for analyzing average levels of glutamine-dependent basal mitochondrial respiration, mitochondrial ATP-linked respiration, maximal mitochondrial respiration, and mitochondrial spare respiratory capacity across multiple biological and experimental replicates.
肺泡巨噬细胞(AMs)是下呼吸道抵御病原体的第一道细胞防线。然而,长期过量饮酒会损害AMs从肺泡腔吞噬和清除病原体的能力,部分原因是燃料代谢和生物能量学失调。我们之前的研究表明,长期摄入乙醇(EtOH)会损害线粒体生物能量学,并增加AMs中的乳酸水平。此外,我们最近证明,EtOH会增加谷氨酰胺依赖性和谷氨酰胺依赖性最大呼吸作用,同时降低灵活性,从丙酮酸依赖性呼吸转向谷氨酰胺依赖性呼吸。当丙酮酸用于乳酸生成或其他燃料来源不足时,谷氨酰胺分解是线粒体呼吸的重要代偿途径。使用暴露于无EtOH或EtOH(0.08%)72小时的小鼠AM细胞系MH-S细胞,我们使用细胞外通量生物分析仪确定了线粒体呼吸和生物能量学对作为燃料来源的谷氨酰胺的依赖性。在培养基载体中或单独使用载体时,针对谷氨酰胺酶1的抑制剂双-2-(5-苯乙酰氨基-1,3,4-噻二唑-2-基)乙基硫化物(BPTES)进行实时测量,BPTES可防止谷氨酰胺酶促转化为谷氨酸,随后测试线粒体应激。本文提供的分步方案描述了我们分析多个生物学和实验重复样本中谷氨酰胺依赖性基础线粒体呼吸、线粒体ATP关联呼吸、最大线粒体呼吸和线粒体备用呼吸能力平均水平的方法和计算。