Suppr超能文献

放射学中的多模态大语言模型:原理、应用及潜力

Multi-modal large language models in radiology: principles, applications, and potential.

作者信息

Shen Yiqiu, Xu Yanqi, Ma Jiajian, Rui Wushuang, Zhao Chen, Heacock Laura, Huang Chenchan

机构信息

New York University Langone Medical Center, New York, USA.

New York University, New York, USA.

出版信息

Abdom Radiol (NY). 2025 Jun;50(6):2745-2757. doi: 10.1007/s00261-024-04708-8. Epub 2024 Dec 2.

Abstract

Large language models (LLMs) and multi-modal large language models (MLLMs) represent the cutting-edge in artificial intelligence. This review provides a comprehensive overview of their capabilities and potential impact on radiology. Unlike most existing literature reviews focusing solely on LLMs, this work examines both LLMs and MLLMs, highlighting their potential to support radiology workflows such as report generation, image interpretation, EHR summarization, differential diagnosis generation, and patient education. By streamlining these tasks, LLMs and MLLMs could reduce radiologist workload, improve diagnostic accuracy, support interdisciplinary collaboration, and ultimately enhance patient care. We also discuss key limitations, such as the limited capacity of current MLLMs to interpret 3D medical images and to integrate information from both image and text data, as well as the lack of effective evaluation methods. Ongoing efforts to address these challenges are introduced.

摘要

大语言模型(LLMs)和多模态大语言模型(MLLMs)代表了人工智能的前沿技术。本综述全面概述了它们的能力以及对放射学的潜在影响。与大多数仅专注于大语言模型的现有文献综述不同,本研究同时考察了大语言模型和多模态大语言模型,强调了它们在支持放射学工作流程方面的潜力,如报告生成、图像解读、电子健康记录总结、鉴别诊断生成以及患者教育。通过简化这些任务,大语言模型和多模态大语言模型可以减轻放射科医生的工作量,提高诊断准确性,支持跨学科协作,并最终提升患者护理水平。我们还讨论了关键局限性,例如当前多模态大语言模型在解读3D医学图像以及整合图像和文本数据信息方面的能力有限,以及缺乏有效的评估方法。文中介绍了为应对这些挑战正在进行的努力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验