Qing Enya, Salgado Julisa, Wilcox Alexandria, Gallagher Tom
Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America.
McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America.
PLoS Pathog. 2024 Dec 2;20(12):e1012757. doi: 10.1371/journal.ppat.1012757. eCollection 2024 Dec.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is adapting to continuous presence in humans. Transitions to endemic infection patterns are associated with changes in the spike (S) proteins that direct virus-cell entry. These changes generate antigenic drift and thereby allow virus maintenance in the face of prevalent human antiviral antibodies. These changes also fine tune virus-cell entry dynamics in ways that optimize transmission and infection into human cells. Focusing on the latter aspect, we evaluated the effects of several S protein substitutions on virus-cell membrane fusion, an essential final step in enveloped virus-cell entry. Membrane fusion is executed by integral-membrane "S2" domains, yet we found that substitutions in peripheral "S1" domains altered late-stage fusion dynamics, consistent with S1-S2 heterodimers cooperating throughout cell entry. A specific H655Y change in S1 stabilized a fusion-intermediate S protein conformation and thereby delayed membrane fusion. The H655Y change also sensitized viruses to neutralization by S2-targeting fusion-inhibitory peptides and stem-helix antibodies. The antibodies did not interfere with early fusion-activating steps; rather they targeted the latest stages of S2-directed membrane fusion in a novel neutralization mechanism. These findings demonstrate that single amino acid substitutions in the S proteins both reset viral entry-fusion kinetics and increase sensitivity to antibody neutralization. The results exemplify how selective forces driving SARS-CoV-2 fitness and antibody evasion operate together to shape SARS-CoV-2 evolution.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)正在适应在人类中的持续存在。向地方性感染模式的转变与指导病毒进入细胞的刺突(S)蛋白的变化有关。这些变化产生抗原漂移,从而使病毒在普遍存在的人类抗病毒抗体面前得以维持。这些变化还以优化病毒向人类细胞传播和感染的方式微调病毒进入细胞的动力学。着眼于后一个方面,我们评估了几种S蛋白替代对病毒-细胞膜融合的影响,这是包膜病毒进入细胞的关键最后一步。膜融合由整合膜“ S2”结构域执行,但我们发现外周“ S1”结构域中的替代改变了后期融合动力学,这与S1-S2异二聚体在整个细胞进入过程中协同作用一致。S1中特定的H655Y变化稳定了融合中间S蛋白的构象,从而延迟了膜融合。H655Y变化还使病毒对靶向S2的融合抑制肽和茎螺旋抗体的中和作用敏感。这些抗体不干扰早期融合激活步骤;相反,它们以一种新的中和机制靶向S2介导的膜融合的最新阶段。这些发现表明,S蛋白中的单个氨基酸替代既重置了病毒进入融合动力学,又增加了对抗体中和的敏感性。结果例证了驱动SARS-CoV-2适应性和抗体逃避的选择力如何共同作用以塑造SARS-CoV-2的进化。