Suppr超能文献

SARS-CoV-2 刺突蛋白在细胞进入中的动力学:氨基末端结构域中的控制元件。

Dynamics of SARS-CoV-2 Spike Proteins in Cell Entry: Control Elements in the Amino-Terminal Domains.

机构信息

Department of Microbiology and Immunology, Loyola University Chicagogrid.164971.c, Maywood, Illinois, USA.

Department of Microbiology and Immunology, University of Iowagrid.214572.7, Iowa City, Iowa, USA.

出版信息

mBio. 2021 Aug 31;12(4):e0159021. doi: 10.1128/mBio.01590-21. Epub 2021 Aug 3.

Abstract

Selective pressures drive adaptive changes in the coronavirus spike proteins directing virus-cell entry. These changes are concentrated in the amino-terminal domains (NTDs) and the receptor-binding domains (RBDs) of complex modular spike protein trimers. The impact of this hypervariability on virus entry is often unclear, particularly with respect to sarbecovirus NTD variations. Therefore, we constructed indels and substitutions within hypervariable NTD regions and used severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus-like particles and quantitative virus-cell entry assays to elucidate spike structures controlling this initial infection stage. We identified NTD variations that increased SARS-CoV-2 spike protein-mediated membrane fusion and cell entry. Increased cell entry correlated with greater presentation of RBDs to ACE2 receptors. This revealed a significant allosteric effect, in that changes within the NTDs can orient RBDs for effective virus-cell binding. Yet, those NTD changes elevating receptor binding and membrane fusion also reduced interdomain associations, leaving spikes on virus-like particles susceptible to irreversible inactivation. These findings parallel those obtained decades ago, in which comparisons of murine coronavirus spike protein variants established inverse relationships between membrane fusion potential and virus stability. Considerable hypervariability in the SARS-CoV-2 spike protein NTDs also appear to be driven by counterbalancing pressures for effective virus-cell entry and durable extracellular virus infectivity. These forces may selectively amplify SARS-CoV-2 variants of concern. Adaptive changes that increase SARS-CoV-2 transmissibility may expand and prolong the coronavirus disease 2019 (COVID-19) pandemic. Transmission requires metastable and dynamic spike proteins that bind viruses to cells and catalyze virus-cell membrane fusion. Using newly developed assays reflecting these two essential steps in virus-cell entry, we focused on adaptive changes in SARS-CoV-2 spike proteins and found that deletions in amino-terminal domains reset spike protein metastability, rendering viruses less stable yet more poised to respond to cellular factors that prompt entry and subsequent infection. The results identify adjustable control features that balance extracellular virus stability with facile virus dynamics during cell entry. These equilibrating elements warrant attention when monitoring the evolution of pandemic coronaviruses.

摘要

选择压力驱动冠状病毒刺突蛋白的适应性变化,指导病毒进入细胞。这些变化集中在复杂模块化刺突蛋白三聚体的氨基末端结构域(NTD)和受体结合结构域(RBD)中。这种高变异性对病毒进入的影响通常不明确,特别是对于沙贝科病毒 NTD 变异。因此,我们在高度可变的 NTD 区域内构建了缺失和取代,并使用严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)病毒样颗粒和定量病毒细胞进入测定法来阐明控制这一初始感染阶段的刺突结构。我们确定了增加 SARS-CoV-2 刺突蛋白介导的膜融合和细胞进入的 NTD 变异。增加的细胞进入与更多的 RBD 呈现给 ACE2 受体相关。这揭示了一个显著的变构效应,即 NTD 中的变化可以使 RBD 定向,以实现有效的病毒细胞结合。然而,那些提高受体结合和膜融合的 NTD 变化也降低了结构域间的关联,使病毒样颗粒上的刺突容易受到不可逆失活的影响。这些发现与几十年前的研究结果相似,其中比较了鼠冠状病毒刺突蛋白变体,确定了膜融合潜力与病毒稳定性之间的反比关系。SARS-CoV-2 刺突蛋白 NTD 的高度变异性似乎也受到有效病毒细胞进入和持久的细胞外病毒感染力的平衡压力的驱动。这些力量可能会选择性地放大 SARS-CoV-2 的关注变体。增加 SARS-CoV-2 传染性的适应性变化可能会扩大和延长 2019 年冠状病毒病(COVID-19)大流行。传播需要稳定和动态的刺突蛋白,这些蛋白将病毒与细胞结合并催化病毒-细胞膜融合。使用反映病毒进入细胞的这两个关键步骤的新开发的测定法,我们专注于 SARS-CoV-2 刺突蛋白的适应性变化,发现氨基末端结构域的缺失重置了刺突蛋白的亚稳性,使病毒更不稳定,但更有可能对促使进入和随后感染的细胞因素做出反应。结果确定了可调的控制特征,这些特征平衡了细胞外病毒的稳定性与细胞进入时病毒的灵活性。在监测大流行冠状病毒的演变时,这些平衡要素值得关注。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/127a/8406164/b59a5fd82906/mbio.01590-21-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验