Suppr超能文献

基于免疫组织化学病理图像,运用机器学习准确预测结直肠癌诊断。

Accurate prediction of colorectal cancer diagnosis using machine learning based on immunohistochemistry pathological images.

作者信息

Ning Bobin, Chi Jimei, Meng Qingyu, Jia Baoqing

机构信息

Department of General Surgery, Chinese PLA General Hospital, Beijing, People's Republic of China.

Key Laboratory of Green Printing, Institute of ChemistryBeijing Engineering Research Center of Nanomaterials for Green Printing TechnologyNational Laboratory for Molecular Sciences (BNLMS), Chinese Academy of Sciences (ICCAS), Beijing, 100190, People's Republic of China.

出版信息

Sci Rep. 2024 Dec 2;14(1):29882. doi: 10.1038/s41598-024-76083-9.

Abstract

Colorectal cancer (CRC) ranks as the third most prevalent tumor and the second leading cause of mortality. Early and accurate diagnosis holds significant importance in enhancing patient treatment and prognosis. Machine learning technology and bioinformatics have provided novel approaches for cancer diagnosis. This study aims to develop a CRC diagnostic model based on immunohistochemical staining image features using machine learning methods. Initially, CRC disease-specific genes were identified through bioinformatics analysis, SVM-RFE and Random Forest algorithm utilizing RNA-seq data from both GEO and TCGA databases. Subsequently, verification of these genes was performed using proteomics data from CPTAC and HPA database, resulting in identification of target proteins (AKR1B10, CA2, DHRS9, and ZG16) for further investigation. SVM and CNN were then employed to analyze and integrate the characteristics of immunohistochemical images to construct a reliable CRC diagnostic model. During the training and validation process of this model, cross-validation along with external validation methods were implemented to ensure accuracy and reliability. The results demonstrate that the established diagnostic model exhibits excellent performance in distinguishing between CRC and normal controls (accuracy rate: 0.999), thereby presenting potential prospects for clinical application. These findings are expected to provide innovative perspectives as well as methodologies for personalized diagnosis of CRC while offering more precise references for promising treatment.

摘要

结直肠癌(CRC)是第三大常见肿瘤,也是第二大致死原因。早期准确诊断对于改善患者治疗和预后至关重要。机器学习技术和生物信息学为癌症诊断提供了新方法。本研究旨在利用机器学习方法,基于免疫组化染色图像特征开发一种CRC诊断模型。首先,通过生物信息学分析、支持向量机递归特征消除(SVM-RFE)和随机森林算法,利用来自基因表达综合数据库(GEO)和癌症基因组图谱(TCGA)数据库的RNA测序数据,识别出CRC疾病特异性基因。随后,使用来自临床蛋白质组肿瘤分析联盟(CPTAC)和人类蛋白质图谱(HPA)数据库的蛋白质组学数据对这些基因进行验证,从而确定用于进一步研究的靶蛋白(醛糖还原酶1B10、碳酸酐酶2、短链脱氢酶/还原酶9和锌α2糖蛋白16)。然后,采用支持向量机和卷积神经网络(CNN)分析和整合免疫组化图像的特征,构建一个可靠的CRC诊断模型。在该模型的训练和验证过程中,采用交叉验证和外部验证方法,以确保准确性和可靠性。结果表明,所建立的诊断模型在区分CRC和正常对照方面表现出优异的性能(准确率:0.999),从而展现出临床应用的潜在前景。这些发现有望为CRC的个性化诊断提供创新的观点和方法,同时为有前景的治疗提供更精确的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/071e/11612503/9c1d188123a3/41598_2024_76083_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验