Tao Dongwang, Fang Shizhe, Liu Haixu, Lu Jianqi, Wang Jiang, Ma Qiang
Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, Earthquake Administration, Harbin, 150080, China.
Key Laboratory of Earthquake Disaster Mitigation, Ministry of Emergency Management, Harbin, 150080, China.
Sci Rep. 2024 Dec 2;14(1):29874. doi: 10.1038/s41598-024-81705-3.
Maximum drift ratio (MDR), one of the engineering demand parameters (EDPs), provides fundamental physical value for predicting building damage. Existing machine learning based prediction models mainly rely on numerical simulation data or structural experiments and are not appropriate for prediction of seismic response of real structures. The New Earthquake Data (NDE1.0) is the most comprehensive publicly available dataset of actual structural seismic response observations. Currently the prediction models using NDE1.0 are mainly based on linear or log-linear regression. In this study, based on the NDE1.0 flatfile, we develop a full-feature support vector regression (SVR) based MDR prediction model (SVR-MDR), treating all the available 41 characteristic parameters including structural information as input feature. To improve the model's efficiency and practical applicability, we also establish a reduced-feature SVR model (RSVR-MDR) by selecting 10 fundamental parameters based on SHapley Additive exPlanations (SHAP) values and the accessibility of features. Our results demonstrate that SVR-MDR model outperform other machine learning models such as kernel ridge regression and decision tree models, and SVR-MDR and RSVR-MDR models outperform conventional loglinear regression and multinomial models, because SVR can map the complex nonlinear function of multiple variables and consider the available information of buildings especially the fundamental frequency. The proposed RSVR-MDR model have promising potential application for post-event seismic damage assessment and post-event emergency response in near real time.
最大位移比(MDR)是工程需求参数(EDP)之一,为预测建筑物损坏提供了基本物理值。现有的基于机器学习的预测模型主要依赖数值模拟数据或结构试验,不适用于实际结构地震响应的预测。新地震数据(NDE1.0)是实际结构地震响应观测中最全面的公开可用数据集。目前使用NDE1.0的预测模型主要基于线性或对数线性回归。在本研究中,基于NDE1.0平面文件,我们开发了一种基于全特征支持向量回归(SVR)的MDR预测模型(SVR-MDR),将包括结构信息在内的所有可用41个特征参数作为输入特征。为了提高模型的效率和实际适用性,我们还基于SHapley加法解释(SHAP)值和特征的可及性选择了10个基本参数,建立了一个降维特征SVR模型(RSVR-MDR)。我们的结果表明,SVR-MDR模型优于其他机器学习模型,如核岭回归和决策树模型,并且SVR-MDR和RSVR-MDR模型优于传统的对数线性回归和多项式模型,因为SVR可以映射多个变量的复杂非线性函数,并考虑建筑物的可用信息,特别是基频。所提出的RSVR-MDR模型在震后地震损伤评估和近实时震后应急响应方面具有广阔的潜在应用前景。